In a singular value decomposition of matrix A - V = 0.5 -0.71 0.41 -0.5 -0.5 0.5 U = 0.0 0.0 0.82 -0.71 0.0 0.0 0.71 0.71 0.41 0.0 Ex: 1.23 60 -3 -3 07 %] -3 -3 6] what is U? with Σ = 8.49 0 0 6.0 00 00 and

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
In a singular value decomposition of matrix \( A = \begin{bmatrix} 6 & -3 & -3 & 0 \\ 0 & -3 & -3 & 6 \end{bmatrix} \) with \( \Sigma = \begin{bmatrix} 8.49 & 0 & 0 & 0 \\ 0 & 6.0 & 0 & 0 \end{bmatrix} \) and 

\[ V = \begin{bmatrix} 0.5 & -0.71 & 0.41 & 0.0 \\ -0.5 & 0.0 & 0.82 & -0.71 \\ -0.5 & 0.0 & 0.0 & 0.71 \\ 0.5 & 0.71 & 0.41 & 0.0 \end{bmatrix} \]

what is \( U \)?

This exercise demonstrates the concept of singular value decomposition (SVD), where:

- \( A \) is the original matrix,
- \( \Sigma \) (Sigma) is the diagonal matrix of singular values,
- \( V \) is the matrix of right singular vectors,
- \( U \) is the matrix of left singular vectors to be determined. 

---

Note: There is a placeholder for users to input or calculate the matrix \( U \):

\[ U = \begin{bmatrix} \text{Ex: 1.23} & \\ & \end{bmatrix} \]
Transcribed Image Text:In a singular value decomposition of matrix \( A = \begin{bmatrix} 6 & -3 & -3 & 0 \\ 0 & -3 & -3 & 6 \end{bmatrix} \) with \( \Sigma = \begin{bmatrix} 8.49 & 0 & 0 & 0 \\ 0 & 6.0 & 0 & 0 \end{bmatrix} \) and \[ V = \begin{bmatrix} 0.5 & -0.71 & 0.41 & 0.0 \\ -0.5 & 0.0 & 0.82 & -0.71 \\ -0.5 & 0.0 & 0.0 & 0.71 \\ 0.5 & 0.71 & 0.41 & 0.0 \end{bmatrix} \] what is \( U \)? This exercise demonstrates the concept of singular value decomposition (SVD), where: - \( A \) is the original matrix, - \( \Sigma \) (Sigma) is the diagonal matrix of singular values, - \( V \) is the matrix of right singular vectors, - \( U \) is the matrix of left singular vectors to be determined. --- Note: There is a placeholder for users to input or calculate the matrix \( U \): \[ U = \begin{bmatrix} \text{Ex: 1.23} & \\ & \end{bmatrix} \]
Expert Solution
Step 1: Definition

The singular value decomposition of a matrix A of order m×n is defined as A=UΣVT , where 

U is a m×m matrix of orthonormal eigenvectors of AAT .

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,