In a manufacturing process, a large, cylindrical roller is used to flatten material fed beneath it. The diameter of the roller is 1.00 m, and, while being driven into rotation around a fixed axis, its angular position is expressed as θ = 2.50t2 - 0.600t3where θ is in radians and t is in seconds. (a) Find the maximum angular speed of the roller. (b) What is the maximum tangential speed of a point on the rim of the roller? (c) At what time t should the driving force be removed from the roller so that the roller does not reverse its direction of rotation? (d) Through how many rotations has the roller turned between t = 0 and the time found in part (c)?
In a manufacturing process, a large, cylindrical roller is used to flatten material fed beneath it. The diameter of the roller is 1.00 m, and, while being driven into rotation around a fixed axis, its angular position is expressed as
θ = 2.50t2 - 0.600t3
where θ is in radians and t is in seconds. (a) Find the maximum angular speed of the roller. (b) What is the maximum tangential speed of a point on the rim of the roller? (c) At what time t should the driving force be removed from the roller so that the roller does not reverse its direction of rotation? (d) Through how many rotations has the roller turned between t = 0 and the time found in part (c)?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 7 images