In a job fair, 3000 applicants applied for a job. The mean age was found to be 28 with a standard deviation of 4 years. Draw a normal curve distribution showing the z-scores and the raw scores. How many applicants are below 20 years old? How many applicants are above 32 years old? How many have ages between 24 and 32 years?
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
In a job fair, 3000 applicants applied for a job. The mean age was found to be 28 with a standard deviation of 4 years.
Draw a
How many applicants are below 20 years old?
How many applicants are above 32 years old?
How many have ages between 24 and 32 years?
Step by step
Solved in 2 steps