In a given plant operation, four streams are mixed to give a single stream with the desired composition. The four inlet streams (stream numbers 1-4) to the mixer and the single exit stream (final product; stream number 5) have the composition shown in the table. Stream Number Composition, % by weight H2SO4 HNO3 H₂O Inerts 1 80 0 16 4 2 0 80 20 0 3 30 10 60 0 4 10 10 72 8 5 40 27 31 2 Determine the mass flow rate of the individual streams for making 2,200 lbs/hr of the final product. Formulate the system of equations generated by this material balance problem. Use the Gauss-Jordan Reduction Method. Identify the Gaussian Matrix and the Gauss-Jordan Matrix. Include these in the summary of answers.
In a given plant operation, four streams are mixed to give a single stream with the desired composition. The four inlet streams (stream numbers 1-4) to the mixer and the single exit stream (final product; stream number 5) have the composition shown in the table. Stream Number Composition, % by weight H2SO4 HNO3 H₂O Inerts 1 80 0 16 4 2 0 80 20 0 3 30 10 60 0 4 10 10 72 8 5 40 27 31 2 Determine the mass flow rate of the individual streams for making 2,200 lbs/hr of the final product. Formulate the system of equations generated by this material balance problem. Use the Gauss-Jordan Reduction Method. Identify the Gaussian Matrix and the Gauss-Jordan Matrix. Include these in the summary of answers.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
![. In a given plant operation, four streams are mixed to give a single stream with
the desired composition. The four inlet streams (stream numbers 1–4) to the mixer and
the single exit stream (final product; stream number 5) have the composition shown in
the table.
Composition, %by weight
Stream
Number
H2SO4
HNO3
H2O
Inerts
1
80
16
4
80
20
3
30
10
60
4
10
10
72
8
40
27
31
Determine the mass flow rate of the individual streams for making 2,200 Ibs/hr of the
final product. Formulate the system of equations generated by this material balance
problem. Use the Gauss-Jordan Reduction Method. Identify the Gaussian Matrix and the
Gauss-Jordan Matrix. Include these in the summary of answers.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7fe25a4b-3ec2-4c5b-8df6-a3f81ca80851%2F1e585415-d15d-4471-9542-efcc4762a0f8%2F6eu8i0s_processed.jpeg&w=3840&q=75)
Transcribed Image Text:. In a given plant operation, four streams are mixed to give a single stream with
the desired composition. The four inlet streams (stream numbers 1–4) to the mixer and
the single exit stream (final product; stream number 5) have the composition shown in
the table.
Composition, %by weight
Stream
Number
H2SO4
HNO3
H2O
Inerts
1
80
16
4
80
20
3
30
10
60
4
10
10
72
8
40
27
31
Determine the mass flow rate of the individual streams for making 2,200 Ibs/hr of the
final product. Formulate the system of equations generated by this material balance
problem. Use the Gauss-Jordan Reduction Method. Identify the Gaussian Matrix and the
Gauss-Jordan Matrix. Include these in the summary of answers.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 28 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introduction to Chemical Engineering Thermodynami…](https://www.bartleby.com/isbn_cover_images/9781259696527/9781259696527_smallCoverImage.gif)
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
![Elements of Chemical Reaction Engineering (5th Ed…](https://www.bartleby.com/isbn_cover_images/9780133887518/9780133887518_smallCoverImage.gif)
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
![Introduction to Chemical Engineering Thermodynami…](https://www.bartleby.com/isbn_cover_images/9781259696527/9781259696527_smallCoverImage.gif)
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
![Elements of Chemical Reaction Engineering (5th Ed…](https://www.bartleby.com/isbn_cover_images/9780133887518/9780133887518_smallCoverImage.gif)
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
![Process Dynamics and Control, 4e](https://www.bartleby.com/isbn_cover_images/9781119285915/9781119285915_smallCoverImage.gif)
![Industrial Plastics: Theory and Applications](https://www.bartleby.com/isbn_cover_images/9781285061238/9781285061238_smallCoverImage.gif)
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
![Unit Operations of Chemical Engineering](https://www.bartleby.com/isbn_cover_images/9780072848236/9780072848236_smallCoverImage.gif)
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The