In a gas turbine the compressor takes in air at a temperature of 15°C and compresses it to four times the initial pressure with an isentropic efficiency of 82%. The air is then passes through a heat exchanger heated by the turbine exhaust before reaching the combustion chamber. In the heat exchanger 78% of the available heat is given to the air. The maximum temperature after constant pressure combustion is 600°C, and the efficiency of the turbine is 70%. Neglecting all losses except those mentioned, and assuming the working
In a gas turbine the compressor takes in air at a temperature of 15°C and compresses it to four times the initial pressure with an isentropic efficiency of 82%. The air is then passes through a heat exchanger heated by the turbine exhaust before reaching the combustion chamber. In the heat exchanger 78% of the available heat is given to the air. The maximum temperature after constant pressure combustion is 600°C, and the efficiency of the turbine is 70%. Neglecting all losses except those mentioned, and assuming the working
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Concept explainers
Heat Exchangers
Heat exchangers are the types of equipment that are primarily employed to transfer the thermal energy from one fluid to another, provided that one of the fluids should be at a higher thermal energy content than the other fluid.
Heat Exchanger
The heat exchanger is a combination of two words ''Heat'' and ''Exchanger''. It is a mechanical device that is used to exchange heat energy between two fluids.
Question

Transcribed Image Text:In a gas turbine the compressor
takes in air at a temperature of 15°C
and compresses it to four times the
initial pressure with an isentropic
efficiency of 82%. The air is then
passes through a heat exchanger
heated by the turbine exhaust before
reaching the combustion chamber.
In the heat exchanger 78% of the
available heat is given to the air. The
maximum temperature after constant
pressure combustion is 600°C, and
the efficiency of the turbine is 70%.
Neglecting all losses except those
mentioned, and assuming the working
fluid throughout the cycle to have the
characteristic of air find the efficiency
of the cycle. Assume R-0.287 kJ/kg K.
and y - 1.4 for air and constant specific
heats throughout 11.77. wnet. 29.2 Kg/
kg.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY