In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acceleration of 50g that lasts for less than 30 ms, but in a crash with a 50g acceleration lasting longer than 30 ms, a driver is unlikely to survive. Imagine a collision in which a driver’s head experienced a 50g acceleration.a. What is the highest speed that the car could have had such that the driver survived?b. What is the shortest survivable distance over which the driver’s head could have come to rest?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acceleration of 50g that lasts for less than 30 ms, but in a crash with a 50g acceleration lasting longer than 30 ms, a driver is unlikely to survive. Imagine a collision in which a driver’s head experienced a 50g acceleration.
a. What is the highest speed that the car could have had such that the driver survived?
b. What is the shortest survivable distance over which the driver’s head could have come to rest?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images