Improper Integral. Explain why 4. .1 dx +0 ,3 -1 * -

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Improper Integral

**Problem 4:** 

Evaluate the integral and explain why it is not equal to zero:

\[
\int_{-1}^{1} \frac{1}{x^3} \, dx \neq 0
\]

### Explanation

This integral is considered "improper" due to the presence of a singularity within the integration limits. Specifically, the function \(\frac{1}{x^3}\) has a vertical asymptote at \(x = 0\), where the function is undefined.

#### Steps to Analyze

1. **Identify the Singularity:**
   - At \(x = 0\), the function \(\frac{1}{x^3}\) becomes undefined since division by zero is not possible. This is why the integral from \(-1\) to \(1\) is improper.

2. **Consider a Two-Part Approach:**
   - Split the integral into two parts to handle the singularity:
   \[
   \int_{-1}^{0} \frac{1}{x^3} \, dx + \int_{0}^{1} \frac{1}{x^3} \, dx
   \]
   - Both integrals must be considered separately by approaching the singularity as a limit.

3. **Evaluate as a Limit:**
   - For instance, evaluate:
   \[
   \lim_{\epsilon \to 0^-} \int_{-1}^{\epsilon} \frac{1}{x^3} \, dx + \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} \frac{1}{x^3} \, dx
   \]
   - Typically, both limits will diverge due to the behavior near \(x = 0\), reinforcing why the integral does not equal zero.

### Conclusion

This improper integral cannot be computed through standard means due to the asymmetric nature of the function around the point of discontinuity, \(x = 0\). The divergence upon approaching zero from either side leads to an undefined or infinite result, indicating that simply setting the integral equal to zero is incorrect.
Transcribed Image Text:### Improper Integral **Problem 4:** Evaluate the integral and explain why it is not equal to zero: \[ \int_{-1}^{1} \frac{1}{x^3} \, dx \neq 0 \] ### Explanation This integral is considered "improper" due to the presence of a singularity within the integration limits. Specifically, the function \(\frac{1}{x^3}\) has a vertical asymptote at \(x = 0\), where the function is undefined. #### Steps to Analyze 1. **Identify the Singularity:** - At \(x = 0\), the function \(\frac{1}{x^3}\) becomes undefined since division by zero is not possible. This is why the integral from \(-1\) to \(1\) is improper. 2. **Consider a Two-Part Approach:** - Split the integral into two parts to handle the singularity: \[ \int_{-1}^{0} \frac{1}{x^3} \, dx + \int_{0}^{1} \frac{1}{x^3} \, dx \] - Both integrals must be considered separately by approaching the singularity as a limit. 3. **Evaluate as a Limit:** - For instance, evaluate: \[ \lim_{\epsilon \to 0^-} \int_{-1}^{\epsilon} \frac{1}{x^3} \, dx + \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} \frac{1}{x^3} \, dx \] - Typically, both limits will diverge due to the behavior near \(x = 0\), reinforcing why the integral does not equal zero. ### Conclusion This improper integral cannot be computed through standard means due to the asymmetric nature of the function around the point of discontinuity, \(x = 0\). The divergence upon approaching zero from either side leads to an undefined or infinite result, indicating that simply setting the integral equal to zero is incorrect.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning