Implement the quadratic formula) function. The function takes 3 arguments, a, b, and e, and computes the two results of the quadratic formula: -b + V - dae 2a -b - V - dae 2a The quadratic formula) function returns the tuple (x1, x2). Ex: When a 1, b=-5, and e =6, quadratic. formula0 retuns (3, 2). Code provided in main py reads a single input line containing values for a, b, and a, separated by spaces. Each input is converted to a float and passed to the quadratic.formula() function. Ex: If the input is 2 -3 -77 the output is: Solutions to 2x*2 + -3x + -77-0

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

need help on this python question, use the code provided and fill in the # what is asking with new and easy code

Implement the quadratic_formula) function. The function takes 3 arguments, a, b, and e, and computes the two results of the quadratic
formula:
-b+ v - dae
2a
-6 - V - dae
2a
The quadratic_formula() function returns the tuple (x1, x2). Ex: When a = 1, b = -5, and c = 6, quadratic_formula() retums (3, 2).
Code provided in main.py reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float
and passed to the quadratic.formula() function.
Ex: If the input is
2 -3 -77
the output is:
Solutions to 2x*2 +-3x + -77 = 0
xl-7
x2 - -5.50
# TODO: Import math module
def quadratic_formula (a, b, c) :
# TODO: Compute the quadratic formula results in variables x1 and x2
return (x1, x2)
def print_number (number, prefix_str):
if float (int (number)) =- number:
print (f'(prefix_str}{number:.0f}')
else:
print (f'(prefix_str}{number: .2f}')
if
input_line -
split_line - input_line.split (" ")
a - float (split_line [0])
b - float (split_line[1])
c - float (split_line[2])
solution = quadratic_formula (a, b, c)
print (f'Solutions to (a:.0f}x^2 + {b:.0f}x + {c:.0f} = 0')
print_number (solution(0], 'x1 = ')
print_number (solution [1], 'x2 = ')
name
main
":
input ()
Transcribed Image Text:Implement the quadratic_formula) function. The function takes 3 arguments, a, b, and e, and computes the two results of the quadratic formula: -b+ v - dae 2a -6 - V - dae 2a The quadratic_formula() function returns the tuple (x1, x2). Ex: When a = 1, b = -5, and c = 6, quadratic_formula() retums (3, 2). Code provided in main.py reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the quadratic.formula() function. Ex: If the input is 2 -3 -77 the output is: Solutions to 2x*2 +-3x + -77 = 0 xl-7 x2 - -5.50 # TODO: Import math module def quadratic_formula (a, b, c) : # TODO: Compute the quadratic formula results in variables x1 and x2 return (x1, x2) def print_number (number, prefix_str): if float (int (number)) =- number: print (f'(prefix_str}{number:.0f}') else: print (f'(prefix_str}{number: .2f}') if input_line - split_line - input_line.split (" ") a - float (split_line [0]) b - float (split_line[1]) c - float (split_line[2]) solution = quadratic_formula (a, b, c) print (f'Solutions to (a:.0f}x^2 + {b:.0f}x + {c:.0f} = 0') print_number (solution(0], 'x1 = ') print_number (solution [1], 'x2 = ') name main ": input ()
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Declaring and Defining the Function
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education