Imagine we model a proton inside an atom’s nucleus as if it were a particle in a one-dimensional box. In this case, the width of the box should be approximately 10 fm. What are the energies of the proton for the ground state, first excited, and second excited state? If the proton dropped from the first excited or second excited to the groud state by emitting a photon, what energy would the photon carry in each case?
Stellar evolution
We may see thousands of stars in the dark sky. Our universe consists of billions of stars. Stars may appear tiny to us but they are huge balls of gasses. Sun is a star of average size. Some stars are even a thousand times larger than the sun. The stars do not exist forever they have a certain lifetime. The life span of the sun is about 10 billion years. The star undergoes various changes during its lifetime, this process is called stellar evolution. The structure of the sun-like star is shown below.
Red Shift
It is an astronomical phenomenon. In this phenomenon, increase in wavelength with corresponding decrease in photon energy and frequency of radiation of light. It is the displacement of spectrum of any kind of astronomical object to the longer wavelengths (red) side.
Imagine we model a proton inside an atom’s nucleus as if it were a particle in a one-dimensional box. In this case, the width of the box should be approximately 10 fm. What are the energies of the proton for the ground state, first excited, and second excited state? If the proton dropped from the first excited or second excited to the groud state by emitting a photon, what energy would the photon carry in each case?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps