(ii) Use the Fisher-Neyman factorization theorem to show that is a sufficient statistic for each of the first three distributions.
(ii) Use the Fisher-Neyman factorization theorem to show that is a sufficient statistic for each of the first three distributions.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
only part ii (i asked part i in a different question)
![Exercise 1
In lecture (Mon 1/30), we showed that
for Bernoulli (p) distribution, the MLE estimator
p=I
is sufficient for the parameter p;
• for Uniform([a, b]), the MLE estimators
• Poisson(X)
• N(μ1,0²)
â = y₁ = min(x₁, · ·, £n), b = Yn = 1 max(x₁,...,xn)
are jointly sufficient for the parameters a, b.
In this exercise, you will deduce similar results for the following four distributions:
• Exp(X)
• Geometric (p)
(i) For each of these four distributions, write down their likelihood functions. (Hint: the
log-likelihood functions for these distributions were computed in previous lecture and
homework.)
(ii) Use the Fisher-Neyman factorization theorem to show that it is a sufficient statistic
for each of the first three distributions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F04625ac1-43ff-4999-b93a-55388fc0c5e2%2F4a013b49-bf91-4384-bdfb-e2ceb938d96e%2F0h417u_processed.png&w=3840&q=75)
Transcribed Image Text:Exercise 1
In lecture (Mon 1/30), we showed that
for Bernoulli (p) distribution, the MLE estimator
p=I
is sufficient for the parameter p;
• for Uniform([a, b]), the MLE estimators
• Poisson(X)
• N(μ1,0²)
â = y₁ = min(x₁, · ·, £n), b = Yn = 1 max(x₁,...,xn)
are jointly sufficient for the parameters a, b.
In this exercise, you will deduce similar results for the following four distributions:
• Exp(X)
• Geometric (p)
(i) For each of these four distributions, write down their likelihood functions. (Hint: the
log-likelihood functions for these distributions were computed in previous lecture and
homework.)
(ii) Use the Fisher-Neyman factorization theorem to show that it is a sufficient statistic
for each of the first three distributions.
Expert Solution

Description
We need to find the likelihood function of the given distributions.
, , , and .
Trending now
This is a popular solution!
Step by step
Solved in 3 steps

Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON

The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman