(ii) Explain Cyclic Redundancy Check (CRC). Given a data message D(x)= 1100001 a Generator polynomial G(x) = x³ +1. Calculate the codeword at the sender side. Als do the calculations on the receiver side.
(ii) Explain Cyclic Redundancy Check (CRC). Given a data message D(x)= 1100001 a Generator polynomial G(x) = x³ +1. Calculate the codeword at the sender side. Als do the calculations on the receiver side.
Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
Related questions
Question
Correct and detailed answer will be Upvoted else downvoted. Thank you!
![### Cyclic Redundancy Check (CRC)
**Problem Statement:**
Given a data message \( D(x) = 1100001 \) and Generator polynomial \( G(x) = x^3 + 1 \). Calculate the codeword at the sender side. Also do the calculations on the receiver side.
**Solution:**
#### 1. Introduction to CRC
Cyclic Redundancy Check (CRC) is a method used in digital networks and storage devices to detect accidental changes to raw data. The CRC employs a generator polynomial to perform binary division of the input data and appends the remainder of this operation to the input data to form the codeword.
#### 2. Given:
- Data message \( D(x) \): 1100001
- Generator polynomial \( G(x) \): \( x^3 + 1 \)
#### 3. Steps at the Sender Side:
1. **Append Zeros:**
- Append \( n \) zeros to the end of \( D(x) \), where \( n \) is the degree of \( G(x) \).
- Degree of \( G(x) = 3 \)
- Modified data message: \( 1100001000 \)
2. **Binary Division:**
- Perform binary division of the modified data message by the generator polynomial.
- The generator polynomial \( G(x) = x^3 + 1 \) corresponds to 1001 in binary.
- Use XOR division (each division step will be modulo 2).
3. **Calculate Remainder:**
- The remainder after the binary division will be the CRC.
4. **Form Codeword:**
- Append the CRC remainder to the original data message to form the codeword.
#### 4. Example Calculation:
Let's break down the binary division:
1. **Initial Data Message**: \( 1100001000 \)
2. **Generator Polynomial**: \( 1001 \)
#### Binary Division Steps (simplified overview):
- Perform XOR starting from the leftmost bit where we encounter a '1':
\[
\begin{aligned}
1100 001000 \quad \text{(Initial Step)} \\
1001 & \quad \text{XOR} \\
\hline
0101000 \\
\end{aligned}
\]
- The process continues, repeatedly applying the XOR and bringing down the next bit until all](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F039f7f42-bea1-420c-8e74-506e9aacc740%2F238a4844-3dbe-48ad-946a-52367bf8ef51%2F2n2nn5_processed.png&w=3840&q=75)
Transcribed Image Text:### Cyclic Redundancy Check (CRC)
**Problem Statement:**
Given a data message \( D(x) = 1100001 \) and Generator polynomial \( G(x) = x^3 + 1 \). Calculate the codeword at the sender side. Also do the calculations on the receiver side.
**Solution:**
#### 1. Introduction to CRC
Cyclic Redundancy Check (CRC) is a method used in digital networks and storage devices to detect accidental changes to raw data. The CRC employs a generator polynomial to perform binary division of the input data and appends the remainder of this operation to the input data to form the codeword.
#### 2. Given:
- Data message \( D(x) \): 1100001
- Generator polynomial \( G(x) \): \( x^3 + 1 \)
#### 3. Steps at the Sender Side:
1. **Append Zeros:**
- Append \( n \) zeros to the end of \( D(x) \), where \( n \) is the degree of \( G(x) \).
- Degree of \( G(x) = 3 \)
- Modified data message: \( 1100001000 \)
2. **Binary Division:**
- Perform binary division of the modified data message by the generator polynomial.
- The generator polynomial \( G(x) = x^3 + 1 \) corresponds to 1001 in binary.
- Use XOR division (each division step will be modulo 2).
3. **Calculate Remainder:**
- The remainder after the binary division will be the CRC.
4. **Form Codeword:**
- Append the CRC remainder to the original data message to form the codeword.
#### 4. Example Calculation:
Let's break down the binary division:
1. **Initial Data Message**: \( 1100001000 \)
2. **Generator Polynomial**: \( 1001 \)
#### Binary Division Steps (simplified overview):
- Perform XOR starting from the leftmost bit where we encounter a '1':
\[
\begin{aligned}
1100 001000 \quad \text{(Initial Step)} \\
1001 & \quad \text{XOR} \\
\hline
0101000 \\
\end{aligned}
\]
- The process continues, repeatedly applying the XOR and bringing down the next bit until all
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Computer Networking: A Top-Down Approach (7th Edi…](https://www.bartleby.com/isbn_cover_images/9780133594140/9780133594140_smallCoverImage.gif)
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
![Computer Organization and Design MIPS Edition, Fi…](https://www.bartleby.com/isbn_cover_images/9780124077263/9780124077263_smallCoverImage.gif)
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
![Network+ Guide to Networks (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337569330/9781337569330_smallCoverImage.gif)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
![Computer Networking: A Top-Down Approach (7th Edi…](https://www.bartleby.com/isbn_cover_images/9780133594140/9780133594140_smallCoverImage.gif)
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
![Computer Organization and Design MIPS Edition, Fi…](https://www.bartleby.com/isbn_cover_images/9780124077263/9780124077263_smallCoverImage.gif)
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
![Network+ Guide to Networks (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337569330/9781337569330_smallCoverImage.gif)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
![Concepts of Database Management](https://www.bartleby.com/isbn_cover_images/9781337093422/9781337093422_smallCoverImage.gif)
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
![Prelude to Programming](https://www.bartleby.com/isbn_cover_images/9780133750423/9780133750423_smallCoverImage.jpg)
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
![Sc Business Data Communications and Networking, T…](https://www.bartleby.com/isbn_cover_images/9781119368830/9781119368830_smallCoverImage.gif)
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY