ig alq edT T Insgnat 17-20 (a) Find the unit tangent and unit normal vectors T(t) and N(t). PERUMAL (b) Use Formula 9 to find the curvature. 17. r(t) = (1, 3 cos t, 3 sin t) 18. r(t) = (t², sin t 1003 01 1802 t cos t, cost + t sin t), t> 0 19. r(t) =(√21, e', e¹) fact that the parabola

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

19

 

A to sasiq
yd boninnatab onslq sT T 17-20
srl mon estos smen od
t≤ 5 q art gainianos
niainos tadi sasia sib
to sasly griminos0
t≤ 1 bidw browe!)
2017
0 < t < π/4 bolts
*3
<4
ap
to four decimal places.
gral.)
4900
(1, 0, 0) to (1, 4, 0)
ations x = sin t,
length of this curve
the parabolic cylinder
nd the exact length of C
5).
the length of the curve
2
y² = 4 and the plane
or the curve measured
sing t and then
c length starting from
curve (in the direction
P(4, 1, 3)
K,
k, P(0, 1,√√2)
=
) and move 5 units
2t
1² + 1
3 cost in the posi-
j
istros is onsl point (1, 0, 0).
2006
JOH
(b) Use Formula 9 to find the curvature.
pasta quintoon
17. r(t) = (t, 3 cos t, 3 sin t)
(a) Find the unit tangent and unit normal vectors T(t) and N(t).
WA
from the point (1, 0)
Ess th
18. r(t) = (t², sin t - t cost, cost + t sin t), t> 0
19. r(t) =(√2t, e', e')) or the graph of kin
20. r(t) = (1, 1², 1²)
loups bril (39MAX3
21-23 Use Theorem 10 to find the curvature.
21. r(t) = t³j + t² k
le our
by
22. r(t) = ti + t²j+e'k
23. r(t) = √√√6t² i + 2t j + 2t³ k
24. Find the curvature of r(t) = (t², In t, t ln t ) at the
5 Find the one I
25. Find the curvature of r(t) = (t, t², t³) at the point (1, 1, 1).
and Ba
26. Graph the curve with parametric equations x == cos t,
y = sin t, z = sin 5t and find the curvature at the
point (1, 0, 0).
vectors that are orthogonal
od) bus ziləri adi awoda & brugt
signiaza hi suala guideluso
is orthogonal to 1). Note
(740
can define
algmat foc
27-29 Use Formula 11 to find the curvature.
27. y = x4
28. y = tan x
LM
30. y = ln x
Alummo1 si 5190 st
Jornal veel
The binonnal vector is
the circular helix
30-31 At what point does the curve have maximum curvature?
What happens to the curvature as x → ∞o?
102
OIT
8 BAUDA
YA
29. y = xe*
01015
Stoporli
Joups
origin.
32. Find an equation of a parabola that has curvature 4 at the
(19
guitsluoeo
33. (a) Is the curvature of the curve C shown in the figure
greater at P or at Q? Explain.
(b) Estimate the curvature at P and at Q by sketching the
osculating circles at those points.
31. y = e* alorio
e BAUDA
slodining sdi bus storio sibi tarti sobo/
Ping
CLAS
sogge
C
CA
C
Transcribed Image Text:A to sasiq yd boninnatab onslq sT T 17-20 srl mon estos smen od t≤ 5 q art gainianos niainos tadi sasia sib to sasly griminos0 t≤ 1 bidw browe!) 2017 0 < t < π/4 bolts *3 <4 ap to four decimal places. gral.) 4900 (1, 0, 0) to (1, 4, 0) ations x = sin t, length of this curve the parabolic cylinder nd the exact length of C 5). the length of the curve 2 y² = 4 and the plane or the curve measured sing t and then c length starting from curve (in the direction P(4, 1, 3) K, k, P(0, 1,√√2) = ) and move 5 units 2t 1² + 1 3 cost in the posi- j istros is onsl point (1, 0, 0). 2006 JOH (b) Use Formula 9 to find the curvature. pasta quintoon 17. r(t) = (t, 3 cos t, 3 sin t) (a) Find the unit tangent and unit normal vectors T(t) and N(t). WA from the point (1, 0) Ess th 18. r(t) = (t², sin t - t cost, cost + t sin t), t> 0 19. r(t) =(√2t, e', e')) or the graph of kin 20. r(t) = (1, 1², 1²) loups bril (39MAX3 21-23 Use Theorem 10 to find the curvature. 21. r(t) = t³j + t² k le our by 22. r(t) = ti + t²j+e'k 23. r(t) = √√√6t² i + 2t j + 2t³ k 24. Find the curvature of r(t) = (t², In t, t ln t ) at the 5 Find the one I 25. Find the curvature of r(t) = (t, t², t³) at the point (1, 1, 1). and Ba 26. Graph the curve with parametric equations x == cos t, y = sin t, z = sin 5t and find the curvature at the point (1, 0, 0). vectors that are orthogonal od) bus ziləri adi awoda & brugt signiaza hi suala guideluso is orthogonal to 1). Note (740 can define algmat foc 27-29 Use Formula 11 to find the curvature. 27. y = x4 28. y = tan x LM 30. y = ln x Alummo1 si 5190 st Jornal veel The binonnal vector is the circular helix 30-31 At what point does the curve have maximum curvature? What happens to the curvature as x → ∞o? 102 OIT 8 BAUDA YA 29. y = xe* 01015 Stoporli Joups origin. 32. Find an equation of a parabola that has curvature 4 at the (19 guitsluoeo 33. (a) Is the curvature of the curve C shown in the figure greater at P or at Q? Explain. (b) Estimate the curvature at P and at Q by sketching the osculating circles at those points. 31. y = e* alorio e BAUDA slodining sdi bus storio sibi tarti sobo/ Ping CLAS sogge C CA C
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,