Ifv=i+2j and w = 3i+ 6j, then the projection of v onto w is: O 1i - 2j O i + 2j O O -3i - 6j 3i+ 6j

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Vector Projection Problem**

Given vectors: 
\[ \mathbf{v} = \mathbf{i} + 2\mathbf{j} \]
\[ \mathbf{w} = 3\mathbf{i} + 6\mathbf{j} \]

Calculate the projection of vector \(\mathbf{v}\) onto vector \(\mathbf{w}\).

Options:
- \(\mathbf{i} - 2\mathbf{j}\)
- \(\mathbf{i} + 2\mathbf{j}\)
- \(-3\mathbf{i} - 6\mathbf{j}\)
- \(3\mathbf{i} + 6\mathbf{j}\)

Solution:

The projection of vector \(\mathbf{v}\) onto vector \(\mathbf{w}\) is calculated using the formula:
\[ \text{Proj}_{\mathbf{w}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \]

Let's compute it step-by-step:

1. **Dot Product \(\mathbf{v} \cdot \mathbf{w}\):**
   \[ \mathbf{v} \cdot \mathbf{w} = (1 \cdot 3) + (2 \cdot 6) = 3 + 12 = 15 \]

2. **Dot Product \(\mathbf{w} \cdot \mathbf{w}\):**
   \[ \mathbf{w} \cdot \mathbf{w} = (3 \cdot 3) + (6 \cdot 6) = 9 + 36 = 45 \]

3. **Calculate the projection scalar:**
   \[ \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} = \frac{15}{45} = \frac{1}{3} \]

4. **Find the projection vector:**
   \[ \text{Proj}_{\mathbf{w}} \mathbf{v} = \frac{1}{3} \mathbf{w} = \frac{1}{3} (3\mathbf{i} + 6\mathbf{j}) = \mathbf{i} + 2\mathbf{j} \]

So, the projection of \(\
Transcribed Image Text:**Vector Projection Problem** Given vectors: \[ \mathbf{v} = \mathbf{i} + 2\mathbf{j} \] \[ \mathbf{w} = 3\mathbf{i} + 6\mathbf{j} \] Calculate the projection of vector \(\mathbf{v}\) onto vector \(\mathbf{w}\). Options: - \(\mathbf{i} - 2\mathbf{j}\) - \(\mathbf{i} + 2\mathbf{j}\) - \(-3\mathbf{i} - 6\mathbf{j}\) - \(3\mathbf{i} + 6\mathbf{j}\) Solution: The projection of vector \(\mathbf{v}\) onto vector \(\mathbf{w}\) is calculated using the formula: \[ \text{Proj}_{\mathbf{w}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \] Let's compute it step-by-step: 1. **Dot Product \(\mathbf{v} \cdot \mathbf{w}\):** \[ \mathbf{v} \cdot \mathbf{w} = (1 \cdot 3) + (2 \cdot 6) = 3 + 12 = 15 \] 2. **Dot Product \(\mathbf{w} \cdot \mathbf{w}\):** \[ \mathbf{w} \cdot \mathbf{w} = (3 \cdot 3) + (6 \cdot 6) = 9 + 36 = 45 \] 3. **Calculate the projection scalar:** \[ \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} = \frac{15}{45} = \frac{1}{3} \] 4. **Find the projection vector:** \[ \text{Proj}_{\mathbf{w}} \mathbf{v} = \frac{1}{3} \mathbf{w} = \frac{1}{3} (3\mathbf{i} + 6\mathbf{j}) = \mathbf{i} + 2\mathbf{j} \] So, the projection of \(\
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning