College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![### Determining the Velocity from a Position Function
In physics, if the position \( x \) of a particle undergoing simple harmonic motion is given by:
\[ x = A \cos(\omega t + \phi) \]
where:
- \( A \) is the amplitude,
- \( \omega \) is the angular frequency,
- \( t \) is the time, and
- \( \phi \) is the phase constant,
then the velocity \( v \) can be determined by differentiating the position function with respect to time \( t \).
Here are the given options to determine \( v \):
a. \( -\omega A \sin(\omega t + \phi) \)
b. \( \omega A \cos(\omega t + \phi) \)
c. \( \omega^2 A \sin(\omega t + \phi) \)
d. \( +\omega A \sin(\omega t + \phi) \)
e. \( -\omega^2 A \cos(\omega t + \phi) \)
### Explanation:
To find the velocity \( v \), we differentiate the given position function \( x \) with respect to time \( t \):
\[ v = \frac{dx}{dt} \]
Given:
\[ x = A \cos(\omega t + \phi) \]
Using the chain rule, we have:
\[ v = A \cdot \frac{d}{dt} \left[ \cos(\omega t + \phi) \right] \]
Since the derivative of \( \cos(\omega t + \phi) \) with respect to \( t \) is:
\[ \frac{d}{dt} \left[ \cos(\omega t + \phi) \right] = -\omega \sin(\omega t + \phi) \]
Therefore:
\[ v = A \cdot (-\omega \sin(\omega t + \phi)) \]
\[ v = -\omega A \sin(\omega t + \phi) \]
### Correct Answer:
a. \( -\omega A \sin(\omega t + \phi) \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F00822f5e-0c6f-4029-81e1-6a6ab50c835f%2Fad3eb31d-ac64-4bd8-a5f2-1270c86c0b9d%2Ff6t9wim.jpeg&w=3840&q=75)
Transcribed Image Text:### Determining the Velocity from a Position Function
In physics, if the position \( x \) of a particle undergoing simple harmonic motion is given by:
\[ x = A \cos(\omega t + \phi) \]
where:
- \( A \) is the amplitude,
- \( \omega \) is the angular frequency,
- \( t \) is the time, and
- \( \phi \) is the phase constant,
then the velocity \( v \) can be determined by differentiating the position function with respect to time \( t \).
Here are the given options to determine \( v \):
a. \( -\omega A \sin(\omega t + \phi) \)
b. \( \omega A \cos(\omega t + \phi) \)
c. \( \omega^2 A \sin(\omega t + \phi) \)
d. \( +\omega A \sin(\omega t + \phi) \)
e. \( -\omega^2 A \cos(\omega t + \phi) \)
### Explanation:
To find the velocity \( v \), we differentiate the given position function \( x \) with respect to time \( t \):
\[ v = \frac{dx}{dt} \]
Given:
\[ x = A \cos(\omega t + \phi) \]
Using the chain rule, we have:
\[ v = A \cdot \frac{d}{dt} \left[ \cos(\omega t + \phi) \right] \]
Since the derivative of \( \cos(\omega t + \phi) \) with respect to \( t \) is:
\[ \frac{d}{dt} \left[ \cos(\omega t + \phi) \right] = -\omega \sin(\omega t + \phi) \]
Therefore:
\[ v = A \cdot (-\omega \sin(\omega t + \phi)) \]
\[ v = -\omega A \sin(\omega t + \phi) \]
### Correct Answer:
a. \( -\omega A \sin(\omega t + \phi) \)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON