If then A-¹ = Given 6 = E 1 3 solve Ax = b. 0 x = A = 3 3 -1 -9 5 -8 5 3 -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The image presents a mathematical problem involving matrices. Here's the transcription and explanation fit for an educational website:

---

**Problem Statement**

If 

\[ A = \begin{bmatrix} 3 & -9 & 5 \\ 3 & -8 & 5 \\ -1 & 3 & -2 \end{bmatrix}, \]

then

\[ A^{-1} = \begin{bmatrix} \boxed{\phantom{x}} & \boxed{\phantom{x}} & \boxed{\phantom{x}} \\ \boxed{\phantom{x}} & \boxed{\phantom{x}} & \boxed{\phantom{x}} \\ \boxed{\phantom{x}} & \boxed{\phantom{x}} & \boxed{\phantom{x}} \end{bmatrix}. \]

**Task**

Given 

\[ \vec{b} = \begin{bmatrix} 1 \\ 3 \\ -3 \end{bmatrix}, \]

solve the equation \( A\vec{x} = \vec{b} \).

**Solution**

\[ \vec{x} = \begin{bmatrix} \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \end{bmatrix}. \]

**Explanation**

1. **Matrix \(A\)**: A 3x3 matrix is given.
   
2. **Inverse of Matrix \(A\) (\(A^{-1}\))**: The task is to find the inverse of matrix \(A\), represented by a 3x3 matrix filled with empty placeholders for each of its elements.

3. **Vector \(\vec{b}\)**: A 3x1 column vector with values 1, 3, and -3.

4. **Equation \(A\vec{x} = \vec{b}\)**: This equation needs to be solved for the vector \(\vec{x}\).

5. **Solution Vector \(\vec{x}\)**: A 3x1 column vector is shown with placeholders for the solutions.

---

This problem requires understanding of linear algebra to find the inverse of a matrix and solve a system of linear equations.
Transcribed Image Text:The image presents a mathematical problem involving matrices. Here's the transcription and explanation fit for an educational website: --- **Problem Statement** If \[ A = \begin{bmatrix} 3 & -9 & 5 \\ 3 & -8 & 5 \\ -1 & 3 & -2 \end{bmatrix}, \] then \[ A^{-1} = \begin{bmatrix} \boxed{\phantom{x}} & \boxed{\phantom{x}} & \boxed{\phantom{x}} \\ \boxed{\phantom{x}} & \boxed{\phantom{x}} & \boxed{\phantom{x}} \\ \boxed{\phantom{x}} & \boxed{\phantom{x}} & \boxed{\phantom{x}} \end{bmatrix}. \] **Task** Given \[ \vec{b} = \begin{bmatrix} 1 \\ 3 \\ -3 \end{bmatrix}, \] solve the equation \( A\vec{x} = \vec{b} \). **Solution** \[ \vec{x} = \begin{bmatrix} \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \end{bmatrix}. \] **Explanation** 1. **Matrix \(A\)**: A 3x3 matrix is given. 2. **Inverse of Matrix \(A\) (\(A^{-1}\))**: The task is to find the inverse of matrix \(A\), represented by a 3x3 matrix filled with empty placeholders for each of its elements. 3. **Vector \(\vec{b}\)**: A 3x1 column vector with values 1, 3, and -3. 4. **Equation \(A\vec{x} = \vec{b}\)**: This equation needs to be solved for the vector \(\vec{x}\). 5. **Solution Vector \(\vec{x}\)**: A 3x1 column vector is shown with placeholders for the solutions. --- This problem requires understanding of linear algebra to find the inverse of a matrix and solve a system of linear equations.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,