If the values of the joint pdf of X and Y are shown in the table below: 3 X\Y 0 1/12 1/4 1 1/8 1/120 *** 1 1/6 1/4 1/20 *** *** 2 1/24 1/40 Find: a) P(X =1,Y = 2) b) P(X =0,1Y) e) F(2,1)

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
icon
Concept explainers
Question
If the values of the joint pdf of X and Y are shown in the table below:

\[
\begin{array}{c|cccc}
XY & 0 & 1 & 2 & 3 \\
\hline
0 & 1/12 & 1/4 & 1/8 & 1/12 & 1/120 \\
1 & 1/6 & 1/4 & 1/20 & *** \\
2 & 1/24 & 1/40 & *** & *** \\
\end{array}
\]

Find:
a) \( P(X = 1, Y = 2) \)

b) \( P(X = 0, 1 \leq Y \leq 3) \)

c) \( P(X + Y \leq 1) \)

d) \( P(X > Y) \)

e) \( F(2,1) \)

**Explanation of the Table:**

This table provides specific probabilities assigned to pairs of random variables X and Y. Each cell in the table corresponds to a joint probability value \( P(X = x, Y = y) \) for the discrete values of X and Y indicated. The asterisks (***) indicate values that are not provided in the table. 

The tasks involve calculating probabilities and cumulative distribution functions using these given probability values.
Transcribed Image Text:If the values of the joint pdf of X and Y are shown in the table below: \[ \begin{array}{c|cccc} XY & 0 & 1 & 2 & 3 \\ \hline 0 & 1/12 & 1/4 & 1/8 & 1/12 & 1/120 \\ 1 & 1/6 & 1/4 & 1/20 & *** \\ 2 & 1/24 & 1/40 & *** & *** \\ \end{array} \] Find: a) \( P(X = 1, Y = 2) \) b) \( P(X = 0, 1 \leq Y \leq 3) \) c) \( P(X + Y \leq 1) \) d) \( P(X > Y) \) e) \( F(2,1) \) **Explanation of the Table:** This table provides specific probabilities assigned to pairs of random variables X and Y. Each cell in the table corresponds to a joint probability value \( P(X = x, Y = y) \) for the discrete values of X and Y indicated. The asterisks (***) indicate values that are not provided in the table. The tasks involve calculating probabilities and cumulative distribution functions using these given probability values.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer