If the rectangular form of a complex number is A+ jB, where A and B are positive, what is the polar form of the complex number? O VA + B)² Ztan (4) O VA? + B? tan(4) O (A² + B²)Z tan 1(4) O VA? + B? L tan 1(4)
If the rectangular form of a complex number is A+ jB, where A and B are positive, what is the polar form of the complex number? O VA + B)² Ztan (4) O VA? + B? tan(4) O (A² + B²)Z tan 1(4) O VA? + B? L tan 1(4)
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Please answer correctly. Thank you
![### Converting Complex Numbers from Rectangular to Polar Form
If the rectangular form of a complex number is \(A + jB\), where \(A\) and \(B\) are positive, what is the polar form of the complex number?
### Options for Polar Form
1. \[
\sqrt{(A + B)^2} \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
2. \[
\sqrt{A^2 + B^2} \angle \tan^{-1} \left(\frac{A}{B}\right)
\]
3. \[
(A^2 + B^2) \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
4. \[
\sqrt{A^2 + B^2} \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
### Explanation:
To convert from rectangular form to polar form, use the following:
- Magnitude: \( r = \sqrt{A^2 + B^2} \)
- Angle (in radians): \( \theta = \tan^{-1}\left(\frac{B}{A}\right) \)
In polar form, the complex number is expressed as \( r \angle \theta \).
### Correct Choice:
The correct polar form is:
\[
\sqrt{A^2 + B^2} \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
This formula represents the magnitude and angle of the complex number in polar coordinates.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd65464ea-20ac-437a-9b4f-902b3affc00d%2F0721cf02-8be8-4e6a-b23d-f3dfecd7bd05%2Fqb6s1oo_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Converting Complex Numbers from Rectangular to Polar Form
If the rectangular form of a complex number is \(A + jB\), where \(A\) and \(B\) are positive, what is the polar form of the complex number?
### Options for Polar Form
1. \[
\sqrt{(A + B)^2} \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
2. \[
\sqrt{A^2 + B^2} \angle \tan^{-1} \left(\frac{A}{B}\right)
\]
3. \[
(A^2 + B^2) \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
4. \[
\sqrt{A^2 + B^2} \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
### Explanation:
To convert from rectangular form to polar form, use the following:
- Magnitude: \( r = \sqrt{A^2 + B^2} \)
- Angle (in radians): \( \theta = \tan^{-1}\left(\frac{B}{A}\right) \)
In polar form, the complex number is expressed as \( r \angle \theta \).
### Correct Choice:
The correct polar form is:
\[
\sqrt{A^2 + B^2} \angle \tan^{-1} \left(\frac{B}{A}\right)
\]
This formula represents the magnitude and angle of the complex number in polar coordinates.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,