If the random variable T is the time to failure of a commercial product and the values of its probability den-sity and distribution function at time t are f(t) and F(t), then its failure rate at time t is given by f(t)1 − F(t). Thus, thefailure rate at time t is the probability density of failure attime t given that failure does not occur prior to time t.(a) Show that if T has an exponential distribution, thefailure rate is constant. (b) Show that if T has a Weibull distribution (see Exer-cise 23), the failure rate is given by αβt β−1.
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
sity and distribution
1 − F(t)
. Thus, the
failure rate at time t is the probability density of failure at
time t given that failure does not occur prior to time t.
(a) Show that if T has an exponential distribution, the
failure rate is constant.
cise 23), the failure rate is given by αβt
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images