If the car in Example 2.9 had CD = 0.45 and area = 25 ft2, what is the difference in minimum theoretical stopping distances with and without aerodynamic resistance considered (all other factors the same as in Example 2.9)? Example 2.9 EFFECTS OF GRADE ON THEORETICAL MINIMUM STOPPING DISTANCE A car is traveling at 80 mi/h and has a braking efficiency of 80%. The brakes are applied to miss an object that is 150 ft from the point of brake application, and the coefficient of road adhesion is 0.85. Ignoring aerodynamic resistance and assuming the theoretical minimum stopping distance, estimate how fast the car will be going when it strikes the object if (a) the surface is level and (b) the surface is on a 5% upgrade.
If the car in Example 2.9 had CD = 0.45 and area = 25 ft2, what is the difference in minimum theoretical stopping distances with and without aerodynamic resistance considered (all other factors the same as in Example 2.9)?
Example 2.9
EFFECTS OF GRADE ON THEORETICAL MINIMUM STOPPING DISTANCE
A car is traveling at 80 mi/h and has a braking efficiency of 80%. The brakes are applied to miss an object that is 150 ft from the point of brake application, and the coefficient of road adhesion is 0.85. Ignoring aerodynamic resistance and assuming the theoretical minimum stopping distance, estimate how fast the car will be going when it strikes the object if (a) the surface is level and (b) the surface is on a 5% upgrade.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps