If T : R² → R² is a linear transformation such that T standard matrix of T is

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Linear Transformation and Standard Matrix

Given a linear transformation \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) such that:

\[ T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix}, \quad T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \]

we are required to find the standard matrix \( A \) of the transformation \( T \).

### Explanation

To determine the standard matrix \( A \), we use the given transformation properties. The columns of \( A \) can be found by applying the transformation \( T \) to the standard basis vectors of \( \mathbb{R}^2 \):

1. The first column of \( A \) is \( T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix} \).
2. The second column of \( A \) is \( T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \).

Thus, the standard matrix \( A \) of the transformation \( T \) is:

\[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \]

### Matrix Representation

\[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \]

This matrix represents the linear transformation \( T \) in \(\mathbb{R}^2 \).
Transcribed Image Text:### Linear Transformation and Standard Matrix Given a linear transformation \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) such that: \[ T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix}, \quad T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \] we are required to find the standard matrix \( A \) of the transformation \( T \). ### Explanation To determine the standard matrix \( A \), we use the given transformation properties. The columns of \( A \) can be found by applying the transformation \( T \) to the standard basis vectors of \( \mathbb{R}^2 \): 1. The first column of \( A \) is \( T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix} \). 2. The second column of \( A \) is \( T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \). Thus, the standard matrix \( A \) of the transformation \( T \) is: \[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \] ### Matrix Representation \[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \] This matrix represents the linear transformation \( T \) in \(\mathbb{R}^2 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,