If T : R² → R² is a linear transformation such that T standard matrix of T is
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Linear Transformation and Standard Matrix
Given a linear transformation \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) such that:
\[ T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix}, \quad T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \]
we are required to find the standard matrix \( A \) of the transformation \( T \).
### Explanation
To determine the standard matrix \( A \), we use the given transformation properties. The columns of \( A \) can be found by applying the transformation \( T \) to the standard basis vectors of \( \mathbb{R}^2 \):
1. The first column of \( A \) is \( T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix} \).
2. The second column of \( A \) is \( T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \).
Thus, the standard matrix \( A \) of the transformation \( T \) is:
\[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \]
### Matrix Representation
\[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \]
This matrix represents the linear transformation \( T \) in \(\mathbb{R}^2 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F81fc88b8-f305-45c9-87bd-3928568200f8%2F82ed6230-c2ed-4592-9ce9-d3c8208aacb7%2Fa2iri9f.png&w=3840&q=75)
Transcribed Image Text:### Linear Transformation and Standard Matrix
Given a linear transformation \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) such that:
\[ T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix}, \quad T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \]
we are required to find the standard matrix \( A \) of the transformation \( T \).
### Explanation
To determine the standard matrix \( A \), we use the given transformation properties. The columns of \( A \) can be found by applying the transformation \( T \) to the standard basis vectors of \( \mathbb{R}^2 \):
1. The first column of \( A \) is \( T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 4 \end{bmatrix} \).
2. The second column of \( A \) is \( T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \).
Thus, the standard matrix \( A \) of the transformation \( T \) is:
\[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \]
### Matrix Representation
\[ A = \begin{bmatrix} -4 & 1 \\ 4 & 1 \end{bmatrix} \]
This matrix represents the linear transformation \( T \) in \(\mathbb{R}^2 \).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

