If sine = -and cot 8>0, find tan 8. 0 13/10 34 O 0 -3 413

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
### Problem Statement

If \( \sin \theta = -\dfrac{3}{5} \) and \( \cot \theta > 0 \), find \( \tan \theta \).

### Multiple Choice Answers

- \( \dfrac{3}{4} \)
- \( -\dfrac{3}{4} \)
- \( \dfrac{4}{3} \)
- \( -\dfrac{4}{3} \)

### Explanation

In this question, you are given the value of \(\sin \theta\) and a condition on \(\cot \theta\). 

**Step-by-Step Solution:**

1. We know that:
   \( \sin \theta = -\dfrac{3}{5} \)
   and \( \cot \theta > 0 \).

2. To find \(\tan \theta\), we need to use the identity involving \(\sin\), \(\cos\), and \(\tan\):
   \[
   \sin^2 \theta + \cos^2 \theta = 1
   \]

3. Substitute \(\sin \theta = -\dfrac{3}{5}\) into the equation:
   \[
   \left( -\dfrac{3}{5} \right)^2 + \cos^2 \theta = 1
   \]
   \[
   \dfrac{9}{25} + \cos^2 \theta = 1
   \]
   \[
   \cos^2 \theta = 1 - \dfrac{9}{25}
   \]
   \[
   \cos^2 \theta = \dfrac{25}{25} - \dfrac{9}{25}
   \]
   \[
   \cos^2 \theta = \dfrac{16}{25}
   \]
   \[
   \cos \theta = \pm \dfrac{4}{5}
   \]

4. Determine the appropriate sign of \(\cos \theta\). Since \(\cot \theta > 0\), both \(\sin \theta\) and \(\cos \theta\) should either be both negative or both positive in the appropriate quadrant:
    - Given \(\sin \theta = -\dfrac{3}{5}\), we choose \(\cos \theta = \dfrac{4}{5
Transcribed Image Text:### Problem Statement If \( \sin \theta = -\dfrac{3}{5} \) and \( \cot \theta > 0 \), find \( \tan \theta \). ### Multiple Choice Answers - \( \dfrac{3}{4} \) - \( -\dfrac{3}{4} \) - \( \dfrac{4}{3} \) - \( -\dfrac{4}{3} \) ### Explanation In this question, you are given the value of \(\sin \theta\) and a condition on \(\cot \theta\). **Step-by-Step Solution:** 1. We know that: \( \sin \theta = -\dfrac{3}{5} \) and \( \cot \theta > 0 \). 2. To find \(\tan \theta\), we need to use the identity involving \(\sin\), \(\cos\), and \(\tan\): \[ \sin^2 \theta + \cos^2 \theta = 1 \] 3. Substitute \(\sin \theta = -\dfrac{3}{5}\) into the equation: \[ \left( -\dfrac{3}{5} \right)^2 + \cos^2 \theta = 1 \] \[ \dfrac{9}{25} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \dfrac{9}{25} \] \[ \cos^2 \theta = \dfrac{25}{25} - \dfrac{9}{25} \] \[ \cos^2 \theta = \dfrac{16}{25} \] \[ \cos \theta = \pm \dfrac{4}{5} \] 4. Determine the appropriate sign of \(\cos \theta\). Since \(\cot \theta > 0\), both \(\sin \theta\) and \(\cos \theta\) should either be both negative or both positive in the appropriate quadrant: - Given \(\sin \theta = -\dfrac{3}{5}\), we choose \(\cos \theta = \dfrac{4}{5
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning