If f(x, y) = 2x² + 5y² and u is the unit vector in the direction of T 6 which of the following expressions equals Duf(x, y)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Pls answer. Need asap will rate high

If
f(x, y) = 2x² + 5₁²
and
u
is the unit vector in the direction of
π
6
which of the following expressions equals
Du f(x, y)
?
lim
h→0
lim
h→0
lim
h→0
2
²(x + = ₁ ) ² + 5 ( x + √2/²₁ ) ² − (2x² + 58² )
2x
5y
-
h
None of the given choices
lim
h→0
2
2
2 ( x + √2/²₁) ²³ + 5(x + √2/² » ) ² − (2x² + 53²)
-
y
-
h
2
2 ( x + √/³√n ) ² + 5(x + ²√n) ² -
+ 5 (y +_h) − (2x² + 5y²)
h
2
2
² ( x − — ^)² + 5 ( x − 4 /³^₁) ³² - (2x² + 55²)
√3
2
y
h
Transcribed Image Text:If f(x, y) = 2x² + 5₁² and u is the unit vector in the direction of π 6 which of the following expressions equals Du f(x, y) ? lim h→0 lim h→0 lim h→0 2 ²(x + = ₁ ) ² + 5 ( x + √2/²₁ ) ² − (2x² + 58² ) 2x 5y - h None of the given choices lim h→0 2 2 2 ( x + √2/²₁) ²³ + 5(x + √2/² » ) ² − (2x² + 53²) - y - h 2 2 ( x + √/³√n ) ² + 5(x + ²√n) ² - + 5 (y +_h) − (2x² + 5y²) h 2 2 ² ( x − — ^)² + 5 ( x − 4 /³^₁) ³² - (2x² + 55²) √3 2 y h
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,