If f(x) = at a + √a 2n-1 "I 2f ( 217 ) Σ r=1 (a) 1 (a > 0), then the value of (b) 2n

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let f(x) be a function satisfying the functional equation
f(x) + f(1 − x) = k, for every x € Q, where k is a constant
quantity.
Let m be a positive integer.
Π
Π
Π Π
Put x =
r
m + 1
1
\m + 1/ _ \ m+ 1
ΣπF)+Σ,+1=5)
m
r=l
m
in the given equation we get
r=1 m
Σ(+)+2+1)
m
Σ AMF)
r=1
m + 1
m
where t = m + 1 - r.
m
22 FF 1)
r=1
+
= mk
m
mk
2
m
= mk
= mk
Transcribed Image Text:Let f(x) be a function satisfying the functional equation f(x) + f(1 − x) = k, for every x € Q, where k is a constant quantity. Let m be a positive integer. Π Π Π Π Put x = r m + 1 1 \m + 1/ _ \ m+ 1 ΣπF)+Σ,+1=5) m r=l m in the given equation we get r=1 m Σ(+)+2+1) m Σ AMF) r=1 m + 1 m where t = m + 1 - r. m 22 FF 1) r=1 + = mk m mk 2 m = mk = mk
If f(x) =
at
a + √a
2n-1
"I 2f ( 217 )
Σ
r=1
(a) 1
(c) 2n-1
(a > 0), then the value of
(b) 2n
(d) (2n-1) 2.
Transcribed Image Text:If f(x) = at a + √a 2n-1 "I 2f ( 217 ) Σ r=1 (a) 1 (c) 2n-1 (a > 0), then the value of (b) 2n (d) (2n-1) 2.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,