If f is continuous on [0, π], use the substitution u = π-x to show that π [" xf(sin(x)) dx = xf(sin(x)) dx = So we have, 元 [xf(si Let u = π - x. Then du = ---Select--- . When x = π, u = 0, and when x = 0, u = ---Select--- ✓ Use U-substitution to replace the values in the integral. [² - [° (π - L) r (sin( [ u) π 7. * F (sir π = ["² (72 - u ) ₁( sin ( (π- Recall the identity that sin(π - u) = ["xf(sin(x)) dx = [(x - u)r (sin( [ = π 2 6.² xf(sin(x)) dx = π *S*H f(sin(x)) dx. = 7 *. [**f(sin(u)) du - - π ² [²x 2 x f(sin(x)) dx = π 10 *** (sin([ f(sin(x)) dx - sin(u) and make the appropriate substitution and continue the proof. ])) du [*ur(sin( [ - [*x r( sin ( [ f(sin(x)) dx - *6*x r( sin ( [ (- du) dx du ])) du 1)) dx ])) dx → →>>
If f is continuous on [0, π], use the substitution u = π-x to show that π [" xf(sin(x)) dx = xf(sin(x)) dx = So we have, 元 [xf(si Let u = π - x. Then du = ---Select--- . When x = π, u = 0, and when x = 0, u = ---Select--- ✓ Use U-substitution to replace the values in the integral. [² - [° (π - L) r (sin( [ u) π 7. * F (sir π = ["² (72 - u ) ₁( sin ( (π- Recall the identity that sin(π - u) = ["xf(sin(x)) dx = [(x - u)r (sin( [ = π 2 6.² xf(sin(x)) dx = π *S*H f(sin(x)) dx. = 7 *. [**f(sin(u)) du - - π ² [²x 2 x f(sin(x)) dx = π 10 *** (sin([ f(sin(x)) dx - sin(u) and make the appropriate substitution and continue the proof. ])) du [*ur(sin( [ - [*x r( sin ( [ f(sin(x)) dx - *6*x r( sin ( [ (- du) dx du ])) du 1)) dx ])) dx → →>>
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 8 images
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning