If f is continuous on [0, π], use the substitution u = π-x to show that π [" xf(sin(x)) dx = xf(sin(x)) dx = So we have, 元 [xf(si Let u = π - x. Then du = ---Select--- . When x = π, u = 0, and when x = 0, u = ---Select--- ✓ Use U-substitution to replace the values in the integral. [² - [° (π - L) r (sin( [ u) π 7. * F (sir π = ["² (72 - u ) ₁( sin ( (π- Recall the identity that sin(π - u) = ["xf(sin(x)) dx = [(x - u)r (sin( [ = π 2 6.² xf(sin(x)) dx = π *S*H f(sin(x)) dx. = 7 *. [**f(sin(u)) du - - π ² [²x 2 x f(sin(x)) dx = π 10 *** (sin([ f(sin(x)) dx - sin(u) and make the appropriate substitution and continue the proof. ])) du [*ur(sin( [ - [*x r( sin ( [ f(sin(x)) dx - *6*x r( sin ( [ (- du) dx du ])) du 1)) dx ])) dx → →>>

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
If f is continuous on [0, π], use the substitution u = - x to show that
[²x₁
/0
So we have,
π
[²x₁
xf(sin(x)) dx =
π
2 ["x
10
[T
10
---Select--- V When x = π, u = 0, and when x = 0, u = ---Select---
Let u = π - x. Then du =
Use U-substitution to replace the values in the integral.
'0
["xf(sin(x)) dx = [(x - 1) (sin ( [
(π
Jπ
-x [
=
π
- ["(x - 1) ² (sin(
=
(π
xf(sin(x)) dx = π
2
Recall the identity that sin(π – u) = sin(u) and make the appropriate substitution and continue the proof.
["xt({sin(x)) dx = (^(x - u)r (sin( [
(π
)) du
--6²
7. STF (
・ ["ur( sin ( [
= x ( " (sin(x)) dx = ["x ²( sin( [
x f(sin(x)) dx = π
f(sin(x)) dx.
f(sin(u)) du -
f
= = ( " - ( sin ( [
10
f(sin(x)) dx
"π
- [² x r( sin ( [
(- du)
1)) a
dx
du
→
)) au
dx
介
])) dx =
Transcribed Image Text:If f is continuous on [0, π], use the substitution u = - x to show that [²x₁ /0 So we have, π [²x₁ xf(sin(x)) dx = π 2 ["x 10 [T 10 ---Select--- V When x = π, u = 0, and when x = 0, u = ---Select--- Let u = π - x. Then du = Use U-substitution to replace the values in the integral. '0 ["xf(sin(x)) dx = [(x - 1) (sin ( [ (π Jπ -x [ = π - ["(x - 1) ² (sin( = (π xf(sin(x)) dx = π 2 Recall the identity that sin(π – u) = sin(u) and make the appropriate substitution and continue the proof. ["xt({sin(x)) dx = (^(x - u)r (sin( [ (π )) du --6² 7. STF ( ・ ["ur( sin ( [ = x ( " (sin(x)) dx = ["x ²( sin( [ x f(sin(x)) dx = π f(sin(x)) dx. f(sin(u)) du - f = = ( " - ( sin ( [ 10 f(sin(x)) dx "π - [² x r( sin ( [ (- du) 1)) a dx du → )) au dx 介 ])) dx =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 8 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning