Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Mathematics Problem Verification**
---
**Question:**
(a) If \( f \) is continuous and \( f(5) = 2 \) and \( f(4) = 3 \), then \[\lim_{{x \to 2}} f(4x^2 - 11) = 2.\]
**Options:**
- True
- False
---
In this problem, we are given that a function \( f \) is continuous, and we know two of its values: \( f(5) = 2 \) and \( f(4) = 3 \). The task is to determine whether the following limit statement is true: \[\lim_{{x \to 2}} f(4x^2 - 11) = 2.\]
To solve this, we need to check whether the input of the function \( f \) approaches the value 5 as \( x \) approaches 2, given the expression inside the limit.
---
### Solution Steps:
1. **Evaluate the Expression Inside \( f \):**
\[4x^2 - 11\]
2. **Substitute \( x = 2 \):**
\[4(2)^2 - 11 = 4(4) - 11 = 16 - 11 = 5\]
Thus, as \( x \) approaches 2, the expression \( 4x^2 - 11 \) approaches 5.
3. **Limit of the Composition**:
Since \( f \) is continuous, we can directly substitute the limiting value inside \( f \):
\[\lim_{{x \to 2}} f(4x^2 - 11) = f(\lim_{{x \to 2}} (4x^2 - 11)) = f(5)\]
4. **Given Value**:
\[f(5) = 2\]
Hence,
\[\lim_{{x \to 2}} f(4x^2 - 11) = 2\]
Thus, the statement is **True**.
---
**Answer:**
- True](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc931b694-aaff-47c2-895e-73bc1d52993a%2F27eaa1d0-9593-4e1c-a01c-b3b884c834e2%2Fpb926t_processed.png&w=3840&q=75)
Transcribed Image Text:**Mathematics Problem Verification**
---
**Question:**
(a) If \( f \) is continuous and \( f(5) = 2 \) and \( f(4) = 3 \), then \[\lim_{{x \to 2}} f(4x^2 - 11) = 2.\]
**Options:**
- True
- False
---
In this problem, we are given that a function \( f \) is continuous, and we know two of its values: \( f(5) = 2 \) and \( f(4) = 3 \). The task is to determine whether the following limit statement is true: \[\lim_{{x \to 2}} f(4x^2 - 11) = 2.\]
To solve this, we need to check whether the input of the function \( f \) approaches the value 5 as \( x \) approaches 2, given the expression inside the limit.
---
### Solution Steps:
1. **Evaluate the Expression Inside \( f \):**
\[4x^2 - 11\]
2. **Substitute \( x = 2 \):**
\[4(2)^2 - 11 = 4(4) - 11 = 16 - 11 = 5\]
Thus, as \( x \) approaches 2, the expression \( 4x^2 - 11 \) approaches 5.
3. **Limit of the Composition**:
Since \( f \) is continuous, we can directly substitute the limiting value inside \( f \):
\[\lim_{{x \to 2}} f(4x^2 - 11) = f(\lim_{{x \to 2}} (4x^2 - 11)) = f(5)\]
4. **Given Value**:
\[f(5) = 2\]
Hence,
\[\lim_{{x \to 2}} f(4x^2 - 11) = 2\]
Thus, the statement is **True**.
---
**Answer:**
- True
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning