Areas under the Normal Curve Area Areas under the Normal Curve .03 .04 -1.2 -1.1 0.3015 2 .00 .01 .02 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.3 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.2 0.0006 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 -3.1 0.0007 -3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -3.0 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.9 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0019 0.0021 -2.8 0.0020 0.0035 0.0033 0.0031 0.0030 0.0029 -2.7 0.0027 0.0034 0.0032 0.0028 0.0026 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.6 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.5 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4 -2.3 0.0107 0.0104 0.0099 0.0102 0.0091 0.0096 0.0094 0.0087 0.0089 0.0084 -2.3 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2 -2.1 0.0179 0.0166 0.0162 0.0158 0.0154 0.0150 0.0143 -2.1 0.0174 0.0170 0.0146 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0 -1.9 0.0287 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 0.0281 -1.9 0.0274 0.0359 -1.8 0.0344 0.0351 0.0336 0.0329 0.0307 0.0322 0.0301 0.0314 0.0294 -1.8 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 -1.7 0.0392 0.0384 0.0375 0.0367 -1.7 -1.6 0.0548 0.0516 0.0537 0.0465 0.0526 0.0455 -1.6 0.0505 0.0495 0.0485 0.0475 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5 0.0808 0.0793 0.0764 -1.4 0.0721 0.0708 0.0778 0.0681 0.0749 -1.4 0.0735 0.0694 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3 0.1131 0.1151 0.1112 0.1093 0.1056 0.1075 0.1038 0.1003 0.0985 -1.2 0.1020 0.1335 0.1314 0.1357 0.1251 0.1292 0.1271 0.1230 0.1210 0.1190 -1.1 0.1170 0.1539 0.1423 -1.0 0.1587 0.1562 0.1515 0.1492 0.1469 0.1446 0.1379 0.1401 -1.0 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.2389 -0.7 0.2420 0.2266 0.2358 0.2236 0.2327 0.2296 0.2206 0.2177 -0.6 0.2743 0.2709 0.2643 0.2578 0.2546 0.2514 0.2483 0.2676 0.2611 -0.5 0.3085 0.3050 0.2946 0.2912 0.2981 0.2810 0.2877 0.2843 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 -0.3 0.3783 0.3745 0.3707 0.3632 0.3821 0.3669 0.3594 0.3557 0.3520 -0.2 0.4207 0.4090 0.4168 0.4129 0.4052 0.4013 0.3974 0.3936 0.3897 0.4602 0.4522 0.4483 0.4443 -0.1 0.4364 0.4562 0.4325 0.4404 0.4286 0.4960 0.4801 -0.0 0.4721 0.5000 0.4920 0.4880 0.4840 0.4761 0.4681 .00 .01 .02 .03 .04 .05 .06 .07 .08 .05 .06 .07 .08 .09 Z .00 0.0003 0.0003 0.0003 0.0003 0.0002 -3.4 0.0 0.1 0.0004 0.0006 0.2 0.3 0.4 .01 .02 .03 .04 .05 .06 .07 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1 0.6103 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6141 0.2 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6480 0.6406 0.6443 0.3 0.6517 0,6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4 .08 .09 名 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.7 0.7 0.7257 0.7580 0.8 0.7881 0.9 0.8159 1.0 0.8413 0.9726 0.7291 0.7324 0.7357 0.7611 0.7673 0.7642 0.7910 0.7939 0.7967 0.8186 0.8212 0.8238 0.8438 0.8461 0.8485 0.8508 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.9066 0.9099 1.3 0.9131 0.9032 0.9049 0.9082 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 1.5 0.9345 0.9357 0.9370 0.9332 0.9382 0.9394 0.9406 0.9463 0.9505 1.6 0.9515 0.9452 0.9474 0.9484 0.9495 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 1.8 0.9656 0.9664 0.9641 0.9649 0.9671 0.9678 1.9 0.9713 0.9719 0.9732 0.9738 0.9744 0.5 0.7389 0.7422 0.7454 0.7486 0.7549 0.7517 0.6 0.7794 0.7823 0.7852 0.7704 0.7 0.7734 0.7764 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9 0.8531 0.8554 0.8577 0.8599 0.8621 1.0 0.8790 1.1 0.8810 0.8830 0.8980 0.8997 0.9015 1.2 0.9177 0.9147 0.9162 1.3 0.9292 0.9306 0.9319 1.4 0.9686 0.9750 2.0 2.1 2.2 0.9861 0.9864 0.9772 0.9783 0.9778 0.9821 0.9826 0.9830 0.9868 2.3 0.1611 -0.9 0.9893 0,9896 2.4 0.9918 0.9920 2.5 0.9938 0.9940 0.9898 0.9922 0.1894 0.1867 -0.8 0.2148 -0.7 0.2451 -0.6 0.2776 -0.5 0.3121 0.3483 0.3859 0.4247 0.4641 -0.0 .09 -0.4 -0.3 -0.2 -0.1 2 ▲ B' \' C']' σ' 2.6 0.9957 0.9927 0.9929 0.9943 0.9945 0.9946 0.9959 0.9960 0.9931 0.9429 0.9418 0.9441 1.5 0.9525 0.9535 0.9545 1.6 0.9616 0.9625 0.9633 1.7 0.9699 0.9693 0.9706 1.8 1.9 0.9756 0.9761 0.9767 0.9788 2.0 0.9798 0.9803 0.9793 0.9817 0.9808 0.9812 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1 0.9884 0.9887 0.9871 0.9875 0.9878 0.9881 0.9890 2.2 0.9913 0.9901 0.9904 0.9906 0.9909 0.9911 0.9925 0.9932 0.9934 0.9916 2.3 0.9936 2.4 ¡Ai --‹ ›0 = 0 2.7 2.8 2.9 3.4 2 .00 0.9941 0.9956 0.9953 0.9955 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9974 0.9976 0.9975 0.9977 0.9977 0.9979 0.9978 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9986 2.9 0.9984 0.9985 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0 3.1 0.9990 0.9993 0.9991 0.9991 0.9992 0.9992 0.9991 0.9993 3.1 0.9992 0.9992 3.2 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 3.3 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 .01 .02 .03 .04 0.9948 0.9949 0.9951 0.9952 2.5 0.9961 0.9962 0.9963 0.9964 2.6 0.9972 0.9973 0.9974 2.7 0.9979 0.9980 0.9981 2.8 0.9986 0.9997 3.3 3.4 .05 .06 .07 .08 .09 If all possible samples of size 64 are drawn from a normal population with mean equal to 50 and standard deviation equal to 14, what is the probability that a sample mean X will fall in the interval from μx-1.40 to μx -0.50×? Assume that the sample means can be measured to any degree of accuracy. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The probability is (Round to four decimal places as needed.)
Areas under the Normal Curve Area Areas under the Normal Curve .03 .04 -1.2 -1.1 0.3015 2 .00 .01 .02 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.3 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.2 0.0006 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 -3.1 0.0007 -3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -3.0 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.9 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0019 0.0021 -2.8 0.0020 0.0035 0.0033 0.0031 0.0030 0.0029 -2.7 0.0027 0.0034 0.0032 0.0028 0.0026 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.6 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.5 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4 -2.3 0.0107 0.0104 0.0099 0.0102 0.0091 0.0096 0.0094 0.0087 0.0089 0.0084 -2.3 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2 -2.1 0.0179 0.0166 0.0162 0.0158 0.0154 0.0150 0.0143 -2.1 0.0174 0.0170 0.0146 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0 -1.9 0.0287 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 0.0281 -1.9 0.0274 0.0359 -1.8 0.0344 0.0351 0.0336 0.0329 0.0307 0.0322 0.0301 0.0314 0.0294 -1.8 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 -1.7 0.0392 0.0384 0.0375 0.0367 -1.7 -1.6 0.0548 0.0516 0.0537 0.0465 0.0526 0.0455 -1.6 0.0505 0.0495 0.0485 0.0475 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5 0.0808 0.0793 0.0764 -1.4 0.0721 0.0708 0.0778 0.0681 0.0749 -1.4 0.0735 0.0694 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3 0.1131 0.1151 0.1112 0.1093 0.1056 0.1075 0.1038 0.1003 0.0985 -1.2 0.1020 0.1335 0.1314 0.1357 0.1251 0.1292 0.1271 0.1230 0.1210 0.1190 -1.1 0.1170 0.1539 0.1423 -1.0 0.1587 0.1562 0.1515 0.1492 0.1469 0.1446 0.1379 0.1401 -1.0 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.2389 -0.7 0.2420 0.2266 0.2358 0.2236 0.2327 0.2296 0.2206 0.2177 -0.6 0.2743 0.2709 0.2643 0.2578 0.2546 0.2514 0.2483 0.2676 0.2611 -0.5 0.3085 0.3050 0.2946 0.2912 0.2981 0.2810 0.2877 0.2843 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 -0.3 0.3783 0.3745 0.3707 0.3632 0.3821 0.3669 0.3594 0.3557 0.3520 -0.2 0.4207 0.4090 0.4168 0.4129 0.4052 0.4013 0.3974 0.3936 0.3897 0.4602 0.4522 0.4483 0.4443 -0.1 0.4364 0.4562 0.4325 0.4404 0.4286 0.4960 0.4801 -0.0 0.4721 0.5000 0.4920 0.4880 0.4840 0.4761 0.4681 .00 .01 .02 .03 .04 .05 .06 .07 .08 .05 .06 .07 .08 .09 Z .00 0.0003 0.0003 0.0003 0.0003 0.0002 -3.4 0.0 0.1 0.0004 0.0006 0.2 0.3 0.4 .01 .02 .03 .04 .05 .06 .07 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1 0.6103 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6141 0.2 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6480 0.6406 0.6443 0.3 0.6517 0,6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4 .08 .09 名 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.7 0.7 0.7257 0.7580 0.8 0.7881 0.9 0.8159 1.0 0.8413 0.9726 0.7291 0.7324 0.7357 0.7611 0.7673 0.7642 0.7910 0.7939 0.7967 0.8186 0.8212 0.8238 0.8438 0.8461 0.8485 0.8508 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.9066 0.9099 1.3 0.9131 0.9032 0.9049 0.9082 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 1.5 0.9345 0.9357 0.9370 0.9332 0.9382 0.9394 0.9406 0.9463 0.9505 1.6 0.9515 0.9452 0.9474 0.9484 0.9495 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 1.8 0.9656 0.9664 0.9641 0.9649 0.9671 0.9678 1.9 0.9713 0.9719 0.9732 0.9738 0.9744 0.5 0.7389 0.7422 0.7454 0.7486 0.7549 0.7517 0.6 0.7794 0.7823 0.7852 0.7704 0.7 0.7734 0.7764 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9 0.8531 0.8554 0.8577 0.8599 0.8621 1.0 0.8790 1.1 0.8810 0.8830 0.8980 0.8997 0.9015 1.2 0.9177 0.9147 0.9162 1.3 0.9292 0.9306 0.9319 1.4 0.9686 0.9750 2.0 2.1 2.2 0.9861 0.9864 0.9772 0.9783 0.9778 0.9821 0.9826 0.9830 0.9868 2.3 0.1611 -0.9 0.9893 0,9896 2.4 0.9918 0.9920 2.5 0.9938 0.9940 0.9898 0.9922 0.1894 0.1867 -0.8 0.2148 -0.7 0.2451 -0.6 0.2776 -0.5 0.3121 0.3483 0.3859 0.4247 0.4641 -0.0 .09 -0.4 -0.3 -0.2 -0.1 2 ▲ B' \' C']' σ' 2.6 0.9957 0.9927 0.9929 0.9943 0.9945 0.9946 0.9959 0.9960 0.9931 0.9429 0.9418 0.9441 1.5 0.9525 0.9535 0.9545 1.6 0.9616 0.9625 0.9633 1.7 0.9699 0.9693 0.9706 1.8 1.9 0.9756 0.9761 0.9767 0.9788 2.0 0.9798 0.9803 0.9793 0.9817 0.9808 0.9812 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1 0.9884 0.9887 0.9871 0.9875 0.9878 0.9881 0.9890 2.2 0.9913 0.9901 0.9904 0.9906 0.9909 0.9911 0.9925 0.9932 0.9934 0.9916 2.3 0.9936 2.4 ¡Ai --‹ ›0 = 0 2.7 2.8 2.9 3.4 2 .00 0.9941 0.9956 0.9953 0.9955 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9974 0.9976 0.9975 0.9977 0.9977 0.9979 0.9978 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9986 2.9 0.9984 0.9985 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0 3.1 0.9990 0.9993 0.9991 0.9991 0.9992 0.9992 0.9991 0.9993 3.1 0.9992 0.9992 3.2 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 3.3 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 .01 .02 .03 .04 0.9948 0.9949 0.9951 0.9952 2.5 0.9961 0.9962 0.9963 0.9964 2.6 0.9972 0.9973 0.9974 2.7 0.9979 0.9980 0.9981 2.8 0.9986 0.9997 3.3 3.4 .05 .06 .07 .08 .09 If all possible samples of size 64 are drawn from a normal population with mean equal to 50 and standard deviation equal to 14, what is the probability that a sample mean X will fall in the interval from μx-1.40 to μx -0.50×? Assume that the sample means can be measured to any degree of accuracy. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The probability is (Round to four decimal places as needed.)
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
100%
Please solve this question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON