If A is a 3 x 3 matrix and a₁ + 2a2 a3 = 0, here a₁, a2, a3 are columns of A. (Eğer A, 3 x 3 bir matris ise ve a₁ + 2a2 − a3 = 0 koşulu sağlanıyorsa, burada a₁, a2, a3 A'nın sütunlarıdır.) Then A must be (olmak zorundadır). Let A be a 3 x 3 matrix and let b = 3a₁ + a₂ + 4a3, here a₁, a2, a3 are columns of A. (A, 3 × 3 bir matris olsun ve b = 3a₁ + a₂ + 4a3 olsun, burada, a₁, A2, A3 A'nın sütunlarıdır.) The system Ax = b will be (Ax = b sistemi) ◆ Every homogeneous linear system is (Her homojen lineer sistem) If the row reduced echelon form of A involves free variables, then the system Ax = b (A'nın satır indirgenmiş basit şekli serbest değişkenler içeriyorsa, Ax = b sisteminin) ◆

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

Please fill in the blanks.  blanks given sequentially.

 1) singular / non-singular

  2) inconsistent / consistent

  3 ) inconsistent / consistent

   4) will have many solutions / will have unique solutions / will have no solutions 

• If A is a 3 x 3 matrix and a₁ + 2a2 − a3 = 0, here a₁, a2, a3 are columns of A. (Eğer A, 3 x 3 bir matris ise ve
a₁ +2a2 − a3 = 0 koşulu sağlanıyorsa, burada a₁, a2, a3 A'nın sütunlarıdır.) Then A must be
(olmak zorundadır).
• Let A be a 3 x 3 matrix and let b = 3a₁ + a2 +4a3, here α₁, 2, α are columns of A. (A, 3 × 3 bir matris olsun ve
b = 3a₁ + a₂ + 4a3 olsun, burada, a₁, A2, A3 A'nın sütunlarıdır.) The system Ax = b will be (Ax = b sistemi)
◆
• Every homogeneous linear system is (Her homojen lineer sistem)
◆
• If the row reduced echelon form of A involves free variables, then the system Ax = b (A'nın satır indirgenmiş basit şekli serbest
değişkenler içeriyorsa, Ax = b sisteminin)
◆
Transcribed Image Text:• If A is a 3 x 3 matrix and a₁ + 2a2 − a3 = 0, here a₁, a2, a3 are columns of A. (Eğer A, 3 x 3 bir matris ise ve a₁ +2a2 − a3 = 0 koşulu sağlanıyorsa, burada a₁, a2, a3 A'nın sütunlarıdır.) Then A must be (olmak zorundadır). • Let A be a 3 x 3 matrix and let b = 3a₁ + a2 +4a3, here α₁, 2, α are columns of A. (A, 3 × 3 bir matris olsun ve b = 3a₁ + a₂ + 4a3 olsun, burada, a₁, A2, A3 A'nın sütunlarıdır.) The system Ax = b will be (Ax = b sistemi) ◆ • Every homogeneous linear system is (Her homojen lineer sistem) ◆ • If the row reduced echelon form of A involves free variables, then the system Ax = b (A'nın satır indirgenmiş basit şekli serbest değişkenler içeriyorsa, Ax = b sisteminin) ◆
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education