If a feasible solution to the primal minimization problem is 85, then 90 could be a feasible solution to the dual maximization problem. Select one: O True False 4

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
**Duality in Linear Programming: Understanding Feasible Solutions**

In the field of linear programming, understanding the relationship between primal and dual problems is crucial. This exercise demonstrates an important concept in duality theory. 

### Problem Statement:

*If a feasible solution to the primal minimization problem is 85, then 90 could be a feasible solution to the dual maximization problem.*

### Options:

- **True**
- **False** (selected)

### Explanation:

This statement tests the knowledge of the relationship between the solutions of primal and dual problems. In linear programming, the value of the objective function for a feasible solution to the primal problem serves as a lower bound for the dual problem (for a minimization primal and maximization dual). The optimal solution of the dual problem gives an upper bound to the primal minimization problem. Consequently, if 85 is a feasible solution to the primal problem, any solution greater than 85 cannot be feasible for the dual problem. Therefore, the correct answer here is "False", indicating the understanding that 90 cannot be a feasible solution to the dual maximization problem if 85 is a feasible solution to the primal minimization problem.
Transcribed Image Text:**Duality in Linear Programming: Understanding Feasible Solutions** In the field of linear programming, understanding the relationship between primal and dual problems is crucial. This exercise demonstrates an important concept in duality theory. ### Problem Statement: *If a feasible solution to the primal minimization problem is 85, then 90 could be a feasible solution to the dual maximization problem.* ### Options: - **True** - **False** (selected) ### Explanation: This statement tests the knowledge of the relationship between the solutions of primal and dual problems. In linear programming, the value of the objective function for a feasible solution to the primal problem serves as a lower bound for the dual problem (for a minimization primal and maximization dual). The optimal solution of the dual problem gives an upper bound to the primal minimization problem. Consequently, if 85 is a feasible solution to the primal problem, any solution greater than 85 cannot be feasible for the dual problem. Therefore, the correct answer here is "False", indicating the understanding that 90 cannot be a feasible solution to the dual maximization problem if 85 is a feasible solution to the primal minimization problem.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Duality
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education