If A + B = C, use the matrices below to find the element C 1,2? 4 2 -=[² -3 4 B = 1 A 3

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Problem Statement:**

If \( A + B = C \), use the matrices below to find the element \( C_{1,2} \)?

\[ A = \begin{bmatrix}
2 & -3 \\
-1 & 4
\end{bmatrix} \]

\[ B = \begin{bmatrix}
4 & -5 \\
1 & 3
\end{bmatrix} \]

---

**Solution:**

To find \( C_{1,2} \), we need to compute the matrix \( C \) by adding the corresponding elements of matrices \( A \) and \( B \).

Given:
\[ A = \begin{bmatrix}
2 & -3 \\
-1 & 4
\end{bmatrix} \]

\[ B = \begin{bmatrix}
4 & -5 \\
1 & 3
\end{bmatrix} \]

**Step-by-Step Calculation:**

1. Add the elements in the first row and first column:
\[ C_{1,1} = A_{1,1} + B_{1,1} = 2 + 4 = 6 \]

2. Add the elements in the first row and second column:
\[ C_{1,2} = A_{1,2} + B_{1,2} = -3 + (-5) = -8 \]

3. Add the elements in the second row and first column:
\[ C_{2,1} = A_{2,1} + B_{2,1} = -1 + 1 = 0 \]

4. Add the elements in the second row and second column:
\[ C_{2,2} = A_{2,2} + B_{2,2} = 4 + 3 = 7 \]

Thus, the matrix \( C \) is:
\[ C = \begin{bmatrix}
6 & -8 \\
0 & 7
\end{bmatrix} \]

Therefore, the element \( C_{1,2} \) is \( -8 \).
Transcribed Image Text:**Problem Statement:** If \( A + B = C \), use the matrices below to find the element \( C_{1,2} \)? \[ A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} \] \[ B = \begin{bmatrix} 4 & -5 \\ 1 & 3 \end{bmatrix} \] --- **Solution:** To find \( C_{1,2} \), we need to compute the matrix \( C \) by adding the corresponding elements of matrices \( A \) and \( B \). Given: \[ A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} \] \[ B = \begin{bmatrix} 4 & -5 \\ 1 & 3 \end{bmatrix} \] **Step-by-Step Calculation:** 1. Add the elements in the first row and first column: \[ C_{1,1} = A_{1,1} + B_{1,1} = 2 + 4 = 6 \] 2. Add the elements in the first row and second column: \[ C_{1,2} = A_{1,2} + B_{1,2} = -3 + (-5) = -8 \] 3. Add the elements in the second row and first column: \[ C_{2,1} = A_{2,1} + B_{2,1} = -1 + 1 = 0 \] 4. Add the elements in the second row and second column: \[ C_{2,2} = A_{2,2} + B_{2,2} = 4 + 3 = 7 \] Thus, the matrix \( C \) is: \[ C = \begin{bmatrix} 6 & -8 \\ 0 & 7 \end{bmatrix} \] Therefore, the element \( C_{1,2} \) is \( -8 \).
**Understanding Matrix Dimensions**

When writing the dimensions of a matrix with 6 columns and 5 rows, one should list the number of columns first (i.e., 6 x 5).

**Question:**
Select one:
- O True
- O False
Transcribed Image Text:**Understanding Matrix Dimensions** When writing the dimensions of a matrix with 6 columns and 5 rows, one should list the number of columns first (i.e., 6 x 5). **Question:** Select one: - O True - O False
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education