Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Problem Statement:**
If \( A + B = C \), use the matrices below to find the element \( C_{1,2} \)?
\[ A = \begin{bmatrix}
2 & -3 \\
-1 & 4
\end{bmatrix} \]
\[ B = \begin{bmatrix}
4 & -5 \\
1 & 3
\end{bmatrix} \]
---
**Solution:**
To find \( C_{1,2} \), we need to compute the matrix \( C \) by adding the corresponding elements of matrices \( A \) and \( B \).
Given:
\[ A = \begin{bmatrix}
2 & -3 \\
-1 & 4
\end{bmatrix} \]
\[ B = \begin{bmatrix}
4 & -5 \\
1 & 3
\end{bmatrix} \]
**Step-by-Step Calculation:**
1. Add the elements in the first row and first column:
\[ C_{1,1} = A_{1,1} + B_{1,1} = 2 + 4 = 6 \]
2. Add the elements in the first row and second column:
\[ C_{1,2} = A_{1,2} + B_{1,2} = -3 + (-5) = -8 \]
3. Add the elements in the second row and first column:
\[ C_{2,1} = A_{2,1} + B_{2,1} = -1 + 1 = 0 \]
4. Add the elements in the second row and second column:
\[ C_{2,2} = A_{2,2} + B_{2,2} = 4 + 3 = 7 \]
Thus, the matrix \( C \) is:
\[ C = \begin{bmatrix}
6 & -8 \\
0 & 7
\end{bmatrix} \]
Therefore, the element \( C_{1,2} \) is \( -8 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5bbc26c4-f789-4881-a3b2-dd815a2e0938%2Fa6c41c80-f108-4b3f-9483-621af5d16054%2F93nenz_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
If \( A + B = C \), use the matrices below to find the element \( C_{1,2} \)?
\[ A = \begin{bmatrix}
2 & -3 \\
-1 & 4
\end{bmatrix} \]
\[ B = \begin{bmatrix}
4 & -5 \\
1 & 3
\end{bmatrix} \]
---
**Solution:**
To find \( C_{1,2} \), we need to compute the matrix \( C \) by adding the corresponding elements of matrices \( A \) and \( B \).
Given:
\[ A = \begin{bmatrix}
2 & -3 \\
-1 & 4
\end{bmatrix} \]
\[ B = \begin{bmatrix}
4 & -5 \\
1 & 3
\end{bmatrix} \]
**Step-by-Step Calculation:**
1. Add the elements in the first row and first column:
\[ C_{1,1} = A_{1,1} + B_{1,1} = 2 + 4 = 6 \]
2. Add the elements in the first row and second column:
\[ C_{1,2} = A_{1,2} + B_{1,2} = -3 + (-5) = -8 \]
3. Add the elements in the second row and first column:
\[ C_{2,1} = A_{2,1} + B_{2,1} = -1 + 1 = 0 \]
4. Add the elements in the second row and second column:
\[ C_{2,2} = A_{2,2} + B_{2,2} = 4 + 3 = 7 \]
Thus, the matrix \( C \) is:
\[ C = \begin{bmatrix}
6 & -8 \\
0 & 7
\end{bmatrix} \]
Therefore, the element \( C_{1,2} \) is \( -8 \).

Transcribed Image Text:**Understanding Matrix Dimensions**
When writing the dimensions of a matrix with 6 columns and 5 rows, one should list the number of columns first (i.e., 6 x 5).
**Question:**
Select one:
- O True
- O False
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education