If 31.5 g of LiBr are dissolved 350.0 g of water at 20.0 °C in an insulated container, a temperature change is observed. The ∆H of solution of LiBr is -48.8 kJ/mol. Assuming that the specific heat of the solution is 4.184 J/(g°C), and that no heat is gained or lost by the container, what will be the final temperature of the solution?

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
If 31.5 g of LiBr are dissolved 350.0 g of water at 20.0 °C in an insulated container, a temperature change is observed. The ∆H of solution of LiBr is -48.8 kJ/mol. Assuming that the specific heat of the solution is 4.184 J/(g°C), and that no heat is gained or lost by the container, what will be the final temperature of the solution?
 
 
Below is the transcription of the provided text, suitable for an educational setting:

---

**Calculation Steps:**

1. **Convert Mass to Moles (LiBr):**

   \[
   \frac{315 \, \text{g LiBr}}{\left(\frac{1 \, \text{mol LiBr}}{87 \, \text{g LiBr}}\right)} = 3.62 \, \text{mol LiBr}
   \]

2. **Calculate Energy Change:**

   \[
   3.62 \, \text{mol LiBr} \left(-48.8 \frac{\text{kJ}}{\text{mol}}\right) = -176.0656 \, \text{kJ}
   \]

   Convert to Joules:

   \[
   -176.0656 \, \text{kJ} \left(\frac{1000 \, \text{J}}{1 \, \text{kJ}}\right) = -176065.6 \, \text{J}
   \]

3. **Total Mass of Solution:**

   \[
   380 \, \text{g H}_{2}\text{O} + 315 \, \text{g LiBr} = 695 \, \text{g solution}
   \]

4. **Formula for Heat Transfer:**

   \[
   -176065.6 \, \text{J} = 381.5 \, \text{g} \left(4.184 \frac{\text{J}}{\text{g°C}}\right) (T_f - 20)
   \]

5. **Solve for Final Temperature (T_f):**

   \[
   -176065.6 \, \text{J} = (T_f - 20)
   \]

   \[
   \frac{-176065.6 \, \text{J}}{381.5 \, \text{g} \cdot 4.184 \frac{\text{J}}{\text{g°C}}} = (T_f - 20)
   \]

   \[
   -11047.3 = T_f - 20
   \]

   \[
   -11047.3 + 20 = T_f
   \]

   \[
   T_f = -11027.3 \, \text{°C
Transcribed Image Text:Below is the transcription of the provided text, suitable for an educational setting: --- **Calculation Steps:** 1. **Convert Mass to Moles (LiBr):** \[ \frac{315 \, \text{g LiBr}}{\left(\frac{1 \, \text{mol LiBr}}{87 \, \text{g LiBr}}\right)} = 3.62 \, \text{mol LiBr} \] 2. **Calculate Energy Change:** \[ 3.62 \, \text{mol LiBr} \left(-48.8 \frac{\text{kJ}}{\text{mol}}\right) = -176.0656 \, \text{kJ} \] Convert to Joules: \[ -176.0656 \, \text{kJ} \left(\frac{1000 \, \text{J}}{1 \, \text{kJ}}\right) = -176065.6 \, \text{J} \] 3. **Total Mass of Solution:** \[ 380 \, \text{g H}_{2}\text{O} + 315 \, \text{g LiBr} = 695 \, \text{g solution} \] 4. **Formula for Heat Transfer:** \[ -176065.6 \, \text{J} = 381.5 \, \text{g} \left(4.184 \frac{\text{J}}{\text{g°C}}\right) (T_f - 20) \] 5. **Solve for Final Temperature (T_f):** \[ -176065.6 \, \text{J} = (T_f - 20) \] \[ \frac{-176065.6 \, \text{J}}{381.5 \, \text{g} \cdot 4.184 \frac{\text{J}}{\text{g°C}}} = (T_f - 20) \] \[ -11047.3 = T_f - 20 \] \[ -11047.3 + 20 = T_f \] \[ T_f = -11027.3 \, \text{°C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Matter
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY