I1 = I2 || = Solve the following initial value problem: 20 ²-(-25) * + (2000) ¹) ² + (501), #(¹) = (22) 72 d dt =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Initial Value Problem for Differential Equations

#### Problem Statement:
Solve the following initial value problem:

\[ \frac{d}{dt} \vec{x} = \begin{pmatrix} -5 & 1 \\ -25 & 5 \end{pmatrix} \vec{x} + \begin{pmatrix} 56t^6 \\ 20t^3 \end{pmatrix}, \quad \vec{x}(1) = \begin{pmatrix} 20 \\ 72 \end{pmatrix} \]

Where:
- \(\frac{d}{dt} \vec{x}\) represents the derivative of vector \(\vec{x}\) with respect to time \(t\).
- The matrix \(\begin{pmatrix} -5 & 1 \\ -25 & 5 \end{pmatrix}\) is the coefficient matrix.
- The term \(\begin{pmatrix} 56t^6 \\ 20t^3 \end{pmatrix}\) is a non-homogeneous part of the differential equation.
- The initial condition is provided as \(\vec{x}(1) = \begin{pmatrix} 20 \\ 72 \end{pmatrix}\).

#### Solution:
To find the functions \( x_1(t) \) and \( x_2(t) \) that satisfies the above system:

1. **Determine the Homogeneous Solution**:
   - Find the eigenvalues and eigenvectors of the coefficient matrix \(\begin{pmatrix} -5 & 1 \\ -25 & 5 \end{pmatrix}\).
   
2. **Find the Particular Solution**:
   - Determine a specific solution for the non-homogeneous term \(\begin{pmatrix} 56t^6 \\ 20t^3 \end{pmatrix}\).

3. **Combine the Solutions**:
   - Combine both the homogeneous and particular solutions.

4. **Apply Initial Condition**:
   - Use \(\vec{x}(1) = \begin{pmatrix} 20 \\ 72 \end{pmatrix}\) to resolve any constants.

#### Final Equation:

\[ x_1 = \]
\[ x_2 = \]
Transcribed Image Text:### Initial Value Problem for Differential Equations #### Problem Statement: Solve the following initial value problem: \[ \frac{d}{dt} \vec{x} = \begin{pmatrix} -5 & 1 \\ -25 & 5 \end{pmatrix} \vec{x} + \begin{pmatrix} 56t^6 \\ 20t^3 \end{pmatrix}, \quad \vec{x}(1) = \begin{pmatrix} 20 \\ 72 \end{pmatrix} \] Where: - \(\frac{d}{dt} \vec{x}\) represents the derivative of vector \(\vec{x}\) with respect to time \(t\). - The matrix \(\begin{pmatrix} -5 & 1 \\ -25 & 5 \end{pmatrix}\) is the coefficient matrix. - The term \(\begin{pmatrix} 56t^6 \\ 20t^3 \end{pmatrix}\) is a non-homogeneous part of the differential equation. - The initial condition is provided as \(\vec{x}(1) = \begin{pmatrix} 20 \\ 72 \end{pmatrix}\). #### Solution: To find the functions \( x_1(t) \) and \( x_2(t) \) that satisfies the above system: 1. **Determine the Homogeneous Solution**: - Find the eigenvalues and eigenvectors of the coefficient matrix \(\begin{pmatrix} -5 & 1 \\ -25 & 5 \end{pmatrix}\). 2. **Find the Particular Solution**: - Determine a specific solution for the non-homogeneous term \(\begin{pmatrix} 56t^6 \\ 20t^3 \end{pmatrix}\). 3. **Combine the Solutions**: - Combine both the homogeneous and particular solutions. 4. **Apply Initial Condition**: - Use \(\vec{x}(1) = \begin{pmatrix} 20 \\ 72 \end{pmatrix}\) to resolve any constants. #### Final Equation: \[ x_1 = \] \[ x_2 = \]
Expert Solution
steps

Step by step

Solved in 3 steps with 37 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,