I. Using a variable or variables, fill in the blanks to rewrite the given statement. 1. Given any real number, there is a real number that is greater. a. Given any real number s, there is _____________r such that ________________________. b. For any ____________________, ___________________________________such that r > s. 2. There is a positive integer whose square is equal to itself. a. There is a real number m such that the square of m is _______________________________. b. There is a real number m with the property that for every real number n_______________________________________________________________________. 3. The square of any negative real number is positive. a. Given any negative real number a, the square of ___________________________________. b. For any real number a , if a is _________________, then _____________________________. c. If a real number a ____________________, then ___________________________________.
I. Using a variable or variables, fill in the blanks to rewrite the given statement.
1. Given any real number, there is a real number that is greater.
a. Given any real number s, there is _____________r such that ________________________.
b. For any ____________________, ___________________________________such that r > s.
2. There is a positive integer whose square is equal to itself.
a. There is a real number m such that the square of m is
_______________________________.
b. There is a real number m with the property that for every real number
n_______________________________________________________________________.
3. The square of any negative real number is positive.
a. Given any negative real number a, the square of
___________________________________.
b. For any real number a , if a is _________________, then
_____________________________.
c. If a real number a ____________________, then
___________________________________.
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)