I used Newton-Raphson's method to find the approximate root of the equation 0 = 1+ x3 - 5x and it was 0.5 x, so the approximate root at the second step is (a) X2 = 0.221568 (b) x2 = 0.201568 %3D X2 = 0.241568 None of the above is correct (d)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
I used Newton-Raphson's method to find the approximate root of the equation 0 = 1+ x3 - 5x and it was 0.5 = x, so the approximate root at the second step is
(a) x2 = 0.221568
(b) x2 = 0.201568
(c) x2 = 0.241568
None of the above is correct (d)
Transcribed Image Text:I used Newton-Raphson's method to find the approximate root of the equation 0 = 1+ x3 - 5x and it was 0.5 = x, so the approximate root at the second step is (a) x2 = 0.221568 (b) x2 = 0.201568 (c) x2 = 0.241568 None of the above is correct (d)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,