(i) Use the linear approximation formula or Ay≈ f'(x) Ar f(x+Ax) = f(x) + f'(z) Ar with a suitable choice of f(z) to show that log(1+30) 30 for small values of 0. (ii) Use the result obtained in part (a) above to approximate * log(1+30) do. 1/6 log(1+30) de exactly using inte- (iii) Check your result in (b) by evaluating gration by parts.
(i) Use the linear approximation formula or Ay≈ f'(x) Ar f(x+Ax) = f(x) + f'(z) Ar with a suitable choice of f(z) to show that log(1+30) 30 for small values of 0. (ii) Use the result obtained in part (a) above to approximate * log(1+30) do. 1/6 log(1+30) de exactly using inte- (iii) Check your result in (b) by evaluating gration by parts.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![(a) (i) Use the linear approximation formula
or
Ay≈ f'(x) Ar
f(x+Ax) f(x) + f'(x) Ax
with a suitable choice of f(x) to show that
log(1+30) 30
for small values of 0.
1/6
Use the result obtained in part (a) above to approximate ¹ log(1+30) de.
log(1+36) de exactly using inte-
(iii) Check your result in (b) by evaluating
gration by parts.
(b) (i) Given that -2+3i is a complex root of the cubic polynomial ³-3x - 52,
determine the other two roots (without using a calculator).
(ii) Hence, (and without using a calculator) determine
12x + 42
³-3x - 52
(Hint: Use the result of part (a) to write
dx.
x³3x-52=(x-a) (x²+bx+c)
for some a, b and c, and use partial fractions.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8b6ffe4a-a17b-40c9-8b59-63f106c89b00%2Fa79cf28e-bc0b-4c10-bfba-bfcfd44f5f02%2Fqlyv1xr_processed.png&w=3840&q=75)
Transcribed Image Text:(a) (i) Use the linear approximation formula
or
Ay≈ f'(x) Ar
f(x+Ax) f(x) + f'(x) Ax
with a suitable choice of f(x) to show that
log(1+30) 30
for small values of 0.
1/6
Use the result obtained in part (a) above to approximate ¹ log(1+30) de.
log(1+36) de exactly using inte-
(iii) Check your result in (b) by evaluating
gration by parts.
(b) (i) Given that -2+3i is a complex root of the cubic polynomial ³-3x - 52,
determine the other two roots (without using a calculator).
(ii) Hence, (and without using a calculator) determine
12x + 42
³-3x - 52
(Hint: Use the result of part (a) to write
dx.
x³3x-52=(x-a) (x²+bx+c)
for some a, b and c, and use partial fractions.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning