I need someone to fix my Python code given the prompy. I can't get it to save the codon counts as a file.  Write Code that completes the following 2 objectives 1. Build a function that takes a record from your FASTA file as an argument, and returns a count of each amino acid coded for by the codons of the sequence.  Keep in mind that because these records are not necessarily in the proper reading frame, so the user should be prompted to select a reading frame (0, +1, +2).   2. In this section, you will be reading in this file of apple genes and, based on these coding sequences, generate a codon usage bias table for this species.  aa_dict = {'Met':['ATG'], 'Phe':['TTT', 'TTC'], 'Leu':['TTA', 'TTG', 'CTT', 'CTC', 'CTA', 'CTG'], 'Cys':['TGT', 'TGC'], 'Tyr':['TAC', 'TAT'], 'Trp':['TGG'], 'Pro':['CCT', 'CCC', 'CCA', 'CCG'], 'His':['CAT', 'CAC'],  'Gln':['CAA', 'CAG'], 'Arg':['CGT', 'CGC', 'CGA', 'CGG', 'AGA', 'AGG'], 'Ile':['ATT', 'ATC', 'ATA'], 'Thr':['ACT', 'ACC', 'ACA', 'ACG'],  'Asn':['AAT', 'AAC'], 'Lys':['AAA', 'AAG'], 'Ser':['AGT', 'AGC', 'TCT', 'TCC', 'TCA', 'TCG'], 'Val':['GTT', 'GTC', 'GTA', 'GTG'],  'Ala':['GCT', 'GCC', 'GCA', 'GCG'], 'Asp':['GAT', 'GAC'], 'Glu':['GAA', 'GAG'], 'Gly':['GGT', 'GGC', 'GGA', 'GGG'], '*':['TAA','TAG','TGA']} def countCodons(fastqRecord,frame):     #param is sequence value     counts = {}          for key in aa_dict:         counts[key] = 0     #print(counts)     for i in range(0+frame,len(fastqRecord),3):         #first iteration: i(0) and i+3(3)         #2nd: i(3) and i+3(6)         #3rd: i(6) and i+3(9)         start = i         end = i+3         codon = fastqRecord[start:end]         for aa,codons in aa_dict.items():             if codon in codons:                 if aa in counts.keys():                     counts[aa] += 1              # count of each AA in fragment using the codon         # Figure out what the AA is         # Add 1 to the count of that AA     print(counts) def generate_codon_usage_bias_table(data):     # First it parses the input data to extract the coding sequences     sequences = parse_data(data)     # the it counts the frequency of each codon in the coding sequences     codon_counts = defaultdict(int)     for sequence in sequences:         for i in range(0, len(sequence), 3):             codon = sequence[i:i+3]             codon_counts[codon] += 1     # The it calculate the codon usage bias for each codon     codon_bias = defaultdict(list)     for codon, count in codon_counts.items():         aa = codon_to_aa_mapping[codon]         total_count = sum(codon_counts[c] for c in codon_to_aa_mapping if codon_to_aa_mapping[c] == aa)         bias = count / total_count         codon_bias[aa].append((codon, count, bias))     # Then it generates a human-readable file that shows the codon usage bias     with open("AppleGenes.edited", 'w') as f:         for aa, bias_list in codon_bias.items():             f.write(f"Amino acid: {aa}\n")             for codon, count, bias in bias_list:                 f.write(f"Codon: {codon} Count: {count} Bias: {bias}\n")     # Finally it calculates the overall codon usage bias for each amino acid     aa_bias = {}     for aa, bias_list in codon_bias.items():         total_bias = sum(bias for codon, count, bias in bias_list)         total_count = sum(count for codon, count, bias in bias_list)         aa_bias[aa] = total_bias / total_count     return aa_bias def main():     d = {}     count = 1     with open("Mdomestica_491_v1.1.cds_primaryTranscriptOnly.fa",'r') as fh:         while 1:             header = fh.readline().rstrip()             if header == "":                 break             sequence = fh.readline().rstrip()             fh.readline()             score = fh.readline().rstrip()             d[header] = (sequence,score) if __name__ == "__main__":     main()

Programming Logic & Design Comprehensive
9th Edition
ISBN:9781337669405
Author:FARRELL
Publisher:FARRELL
Chapter7: File Handling And Applications
Section: Chapter Questions
Problem 15RQ
icon
Related questions
Topic Video
Question

I need someone to fix my Python code given the prompy. I can't get it to save the codon counts as a file. 

Write Code that completes the following 2 objectives

1. Build a function that takes a record from your FASTA file as an argument, and returns a count of each amino acid coded for by the codons of the sequence.  Keep in mind that because these records are not necessarily in the proper reading frame, so the user should be prompted to select a reading frame (0, +1, +2).  

2. In this section, you will be reading in this file of apple genes and, based on these coding sequences, generate a codon usage bias table for this species. 

aa_dict = {'Met':['ATG'], 'Phe':['TTT', 'TTC'], 'Leu':['TTA', 'TTG', 'CTT', 'CTC', 'CTA', 'CTG'], 'Cys':['TGT', 'TGC'], 'Tyr':['TAC', 'TAT'], 'Trp':['TGG'], 'Pro':['CCT', 'CCC', 'CCA', 'CCG'], 'His':['CAT', 'CAC'], 
'Gln':['CAA', 'CAG'], 'Arg':['CGT', 'CGC', 'CGA', 'CGG', 'AGA', 'AGG'], 'Ile':['ATT', 'ATC', 'ATA'], 'Thr':['ACT', 'ACC', 'ACA', 'ACG'], 
'Asn':['AAT', 'AAC'], 'Lys':['AAA', 'AAG'], 'Ser':['AGT', 'AGC', 'TCT', 'TCC', 'TCA', 'TCG'], 'Val':['GTT', 'GTC', 'GTA', 'GTG'], 
'Ala':['GCT', 'GCC', 'GCA', 'GCG'], 'Asp':['GAT', 'GAC'], 'Glu':['GAA', 'GAG'], 'Gly':['GGT', 'GGC', 'GGA', 'GGG'], '*':['TAA','TAG','TGA']}


def countCodons(fastqRecord,frame):
    #param is sequence value
    counts = {}
    
    for key in aa_dict:
        counts[key] = 0
    #print(counts)
    for i in range(0+frame,len(fastqRecord),3):
        #first iteration: i(0) and i+3(3)
        #2nd: i(3) and i+3(6)
        #3rd: i(6) and i+3(9)
        start = i
        end = i+3
        codon = fastqRecord[start:end]
        for aa,codons in aa_dict.items():
            if codon in codons:
                if aa in counts.keys():
                    counts[aa] += 1

        

    # count of each AA in fragment using the codon
        # Figure out what the AA is
        # Add 1 to the count of that AA
    print(counts)


def generate_codon_usage_bias_table(data):
    # First it parses the input data to extract the coding sequences
    sequences = parse_data(data)

    # the it counts the frequency of each codon in the coding sequences
    codon_counts = defaultdict(int)
    for sequence in sequences:
        for i in range(0, len(sequence), 3):
            codon = sequence[i:i+3]
            codon_counts[codon] += 1

    # The it calculate the codon usage bias for each codon
    codon_bias = defaultdict(list)
    for codon, count in codon_counts.items():
        aa = codon_to_aa_mapping[codon]
        total_count = sum(codon_counts[c] for c in codon_to_aa_mapping if codon_to_aa_mapping[c] == aa)
        bias = count / total_count
        codon_bias[aa].append((codon, count, bias))

    # Then it generates a human-readable file that shows the codon usage bias
    with open("AppleGenes.edited", 'w') as f:
        for aa, bias_list in codon_bias.items():
            f.write(f"Amino acid: {aa}\n")
            for codon, count, bias in bias_list:
                f.write(f"Codon: {codon} Count: {count} Bias: {bias}\n")

    # Finally it calculates the overall codon usage bias for each amino acid
    aa_bias = {}
    for aa, bias_list in codon_bias.items():
        total_bias = sum(bias for codon, count, bias in bias_list)
        total_count = sum(count for codon, count, bias in bias_list)
        aa_bias[aa] = total_bias / total_count

    return aa_bias


def main():
    d = {}
    count = 1
    with open("Mdomestica_491_v1.1.cds_primaryTranscriptOnly.fa",'r') as fh:

        while 1:
            header = fh.readline().rstrip()
            if header == "":
                break
            sequence = fh.readline().rstrip()
            fh.readline()
            score = fh.readline().rstrip()

            d[header] = (sequence,score)


if __name__ == "__main__":
    main()

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Instruction Format
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Programming Logic & Design Comprehensive
Programming Logic & Design Comprehensive
Computer Science
ISBN:
9781337669405
Author:
FARRELL
Publisher:
Cengage
EBK JAVA PROGRAMMING
EBK JAVA PROGRAMMING
Computer Science
ISBN:
9781337671385
Author:
FARRELL
Publisher:
CENGAGE LEARNING - CONSIGNMENT
C++ for Engineers and Scientists
C++ for Engineers and Scientists
Computer Science
ISBN:
9781133187844
Author:
Bronson, Gary J.
Publisher:
Course Technology Ptr
Systems Architecture
Systems Architecture
Computer Science
ISBN:
9781305080195
Author:
Stephen D. Burd
Publisher:
Cengage Learning
C++ Programming: From Problem Analysis to Program…
C++ Programming: From Problem Analysis to Program…
Computer Science
ISBN:
9781337102087
Author:
D. S. Malik
Publisher:
Cengage Learning
Microsoft Visual C#
Microsoft Visual C#
Computer Science
ISBN:
9781337102100
Author:
Joyce, Farrell.
Publisher:
Cengage Learning,