I need help with programming in MATLAB. The following code transforms cartesian coordinates to the kepler elements. Can you give me the code for transforming kepler orbital elements to cartesian coordinates. The following code gives the 6 kepler elements. Transform those elements into cartesian coordinate that match the values under the Example Usage part of the code. Can you send a screenshot so I know the output of your code matches the input of the following code?   % Example usage: x = 1000;    y = 2000;    z = 3000;    vx = 4;      vy = -3;     vz = 2;      [a, ecc, inc, raan, argp, f] = cart2orb(x, y, z, vx, vy, vz); % Display the results disp(['Semi-Major Axis (a): ', num2str(a), ' km']); disp(['Eccentricity (ecc): ', num2str(ecc)]); disp(['Inclination (inc): ', num2str(inc), ' degrees']); disp(['Right Ascension of Ascending Node (raan): ', num2str(raan), ' degrees']); disp(['Argument of Perigee (argp): ', num2str(argp), ' degrees']); disp(['True Anomaly (f): ', num2str(f), ' degrees']);   function [a, e, inc, raan, argp, f] = cart2orb(x, y, z, vx, vy, vz)     % Gravitational constant for Earth (μ⊕)     mu = 398600.4418;  % km^3/s^2     % Calculate position and velocity vectors     r = [x; y; z];         % Position vector     v = [vx; vy; vz];       % Velocity vector     % Calculate orbital parameters     h = cross(r, v);        % Specific angular momentum vector     n = cross([0; 0; 1], h); % Nodal vector     % Eccentricity (ecc)     e_vec = (cross(v,h)/mu) - (r/norm(r));     %e_vec = ((norm(v)^2 - mu/norm(r)) * r - dot(r, v) * v) / mu;     e = norm(e_vec);     % Semi-major axis (a)     a = (dot(h,h)/mu) / (1-e^2);     %a = 1 / (2/norm(r) - norm(v)^2/mu_earth);     % Inclination (inc)     inc = acosd(h(3) / norm(h));     % Right Ascension of Ascending Node (raan)     raan = atan2d(n(2), n(1));     raan = mod(raan + 360, 360);  % Ensure raan is in the range [0, 360)     % Argument of Perigee (argp)     argp = atan2d(dot(n, cross(e_vec, h)), dot(n, e_vec));     argp = mod(argp + 360, 360);  % Ensure argp is in the range [0, 360)     % True Anomaly (f)     f = atan2d(dot(e_vec, cross(h, r)), dot(e_vec, r));     f = mod(f + 360, 360);        % Ensure f is in the range [0, 360) end

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

I need help with programming in MATLAB. The following code transforms cartesian coordinates to the kepler elements. Can you give me the code for transforming kepler orbital elements to cartesian coordinates. The following code gives the 6 kepler elements. Transform those elements into cartesian coordinate that match the values under the Example Usage part of the code. Can you send a screenshot so I know the output of your code matches the input of the following code?

 

% Example usage:
x = 1000;   
y = 2000;   
z = 3000;   
vx = 4;     
vy = -3;    
vz = 2;     

[a, ecc, inc, raan, argp, f] = cart2orb(x, y, z, vx, vy, vz);

% Display the results
disp(['Semi-Major Axis (a): ', num2str(a), ' km']);
disp(['Eccentricity (ecc): ', num2str(ecc)]);
disp(['Inclination (inc): ', num2str(inc), ' degrees']);
disp(['Right Ascension of Ascending Node (raan): ', num2str(raan), ' degrees']);
disp(['Argument of Perigee (argp): ', num2str(argp), ' degrees']);
disp(['True Anomaly (f): ', num2str(f), ' degrees']);

 

function [a, e, inc, raan, argp, f] = cart2orb(x, y, z, vx, vy, vz)
    % Gravitational constant for Earth (μ⊕)
    mu = 398600.4418;  % km^3/s^2

    % Calculate position and velocity vectors
    r = [x; y; z];         % Position vector
    v = [vx; vy; vz];       % Velocity vector

    % Calculate orbital parameters
    h = cross(r, v);        % Specific angular momentum vector
    n = cross([0; 0; 1], h); % Nodal vector

    % Eccentricity (ecc)
    e_vec = (cross(v,h)/mu) - (r/norm(r));
    %e_vec = ((norm(v)^2 - mu/norm(r)) * r - dot(r, v) * v) / mu;
    e = norm(e_vec);

    % Semi-major axis (a)
    a = (dot(h,h)/mu) / (1-e^2);
    %a = 1 / (2/norm(r) - norm(v)^2/mu_earth);

    % Inclination (inc)
    inc = acosd(h(3) / norm(h));

    % Right Ascension of Ascending Node (raan)
    raan = atan2d(n(2), n(1));
    raan = mod(raan + 360, 360);  % Ensure raan is in the range [0, 360)

    % Argument of Perigee (argp)
    argp = atan2d(dot(n, cross(e_vec, h)), dot(n, e_vec));
    argp = mod(argp + 360, 360);  % Ensure argp is in the range [0, 360)

    % True Anomaly (f)
    f = atan2d(dot(e_vec, cross(h, r)), dot(e_vec, r));
    f = mod(f + 360, 360);        % Ensure f is in the range [0, 360)
end

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Fibonacci algorithm
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education