I need an explanation to all of these. 1. Consider the following linear program:                    Max 3A + 2B                    s.t.                              1A + 1B ≤ 10                               3A + 1B ≤ 24                                1A + 2B ≤ 16                                 A, B ≥0        a. Use the graphical solution procedure to find the optimal solution.    b. Assume that the objective function coefficient for A changes from 3 to 5. Does the optimal solution change? Use the graphical solution procedure to find the new optimal solution.    c. Assume that the objective function coefficient for A remains 3, but the objective function coefficient for B changes from 2 to 4. Does the optimal solution change? Use the graphical solution procedure to find the new optimal solution.    d. The computer solution for the linear program in part (a) provides the following objective coefficient range information:         Variable               Objective Coefficient                 Allowable Increase                  Allowable Decrease         A                                  3.00000                                         3.00000                                       1.00000         B                                  2.00000                                          1.00000                                        1.00000         Use this objective coefficient range information to answer parts (b) and (c).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

I need an explanation to all of these.

1. Consider the following linear program: 

                  Max 3A + 2B 

                  s.t. 

                            1A + 1B ≤ 10 

                             3A + 1B ≤ 24 

                              1A + 2B ≤ 16 

                               A, B ≥0 

     

a. Use the graphical solution procedure to find the optimal solution. 

 

b. Assume that the objective function coefficient for A changes from 3 to 5. Does the optimal solution change? Use the graphical solution procedure to find the new optimal solution. 

 

c. Assume that the objective function coefficient for A remains 3, but the objective function coefficient for B changes from 2 to 4. Does the optimal solution change? Use the graphical solution procedure to find the new optimal solution. 

 

d. The computer solution for the linear program in part (a) provides the following objective coefficient range information: 

  

    Variable               Objective Coefficient                 Allowable Increase                  Allowable Decrease 

  

    A                                  3.00000                                         3.00000                                       1.00000 

  

    B                                  2.00000                                          1.00000                                        1.00000 

  

    Use this objective coefficient range information to answer parts (b) and (c).

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 9 images

Blurred answer
Knowledge Booster
Optimization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,