(i) If A 0 and B‡0, then 1-k₁+ko 1-ko-k₁ fly C (1) lim W2n →∞ On the other hand, if wo = w_2 = and W2n = wo = w_2. (ii) If A + 0, B #0 and W2n-1= ot√²-4ko k1 2 ko lim w2n-1= 818 Otherwise, if wo = w-2 = (iii) If C 0 and D = 0, then ∞, 818 1-ki+ko 1-ko-ki lim 22 n () ((1 — ko) wo − μ) = w-1. - - 1-k1+ko 1-ko-k₁ #1, then 1-ko+k1 ((to − 1) (=ko+ko) - ko) μ₂ 1-k1-ko and and 1-v1+v0 1-10-21 |(*= √6²_-4ko k1)| 2 1) ₁₂₁ | ( €, ot√2-4 ko k1 2 662-4ko k1 2 o+√²-4ko k1 2 6±√62-4ko k1 2 6±√²-4ko k1 2 √√²-410 v1 2 √√√²-4 vo v1 2 < 1, > 1. < 1, > 1. 0, then A= B =0 < 1, 0, then A= B = 0 and > 1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Show me steps of determine red and all information is here

5 Asymptotic behavior of the solution
This section discusses the behavior and boundedness of the solutions of (4).
Theorem 5.1. Suppose that {wn, zn}_, is a solution of (4), then the following statements
n=-2
are holds.
10
(i) If A + 0 and B + 0, then
|(*
$±Vø2-4 ko k1
1-kj+ko
1-ko-ki ) H,
< 1,
lim w2nl
n 00
0tV$2-4 ko k1
o,
> 1.
2
p±/$2-4 ko kı
On the other hand, if wo = w_2 =
1-kı+ko
1-ko-ki
+ 0, then A = B = 0
H and
2
and w2n = wo = w_2·
(ii) If A # 0, B+ 0 and
0±/02-4 ko kı
2 ko
# 1, then
| ((6-1) (는부북)-) 시 (
$±V¢2-4 ko k1
1-ko+k1
1-k1-ko
< 1,
ko
lim w2 n-1| =
n 00
$±V¢2-4 ko k1
> 1.
+V62-4 ko kı
Otherwise, if wo = w_2 =
1-k1+ko
1-ko-ki
u and
+ 0, then A = B = 0 and
2
) ((1– ko) wo – H) =
W2n-1 =
ko
= W-1.
(iii) If C + 0 and D+ 0, then
t/2-4 vo v1
1-vi+vo
1-v0-v1
< 1,
E,
lim 2n| =
n 00
t/2 -4 vo v1
0,
> 1.
2
2–4 vo v1
On the other hand, if zo = z-2 =
1-vi+vo
1-vo-vi
e and
+ 0, then C = D = 0
and z2n = 20 = 2–2.
tV2-4 vo v1
(iv) If C # 0, D # 0 and
# 1, then
2 vo
((- 1) () - ) (Viorn
tV2-4 vovị
1-vo+vi
1-v1-vo
< 1,
E,
lim 2n-1| =
n 00
b£/2 -4 vo v1
> 1.
t/2-4 vo v1
Otherwise, if zo = z_2 =
1-vi+v0
1-v0-v1
€ and
+ 0, then C = D = 0 and
(5) ((1 – vo) žo – e)
22n-1 =
= 2-1.
VO
11
Transcribed Image Text:5 Asymptotic behavior of the solution This section discusses the behavior and boundedness of the solutions of (4). Theorem 5.1. Suppose that {wn, zn}_, is a solution of (4), then the following statements n=-2 are holds. 10 (i) If A + 0 and B + 0, then |(* $±Vø2-4 ko k1 1-kj+ko 1-ko-ki ) H, < 1, lim w2nl n 00 0tV$2-4 ko k1 o, > 1. 2 p±/$2-4 ko kı On the other hand, if wo = w_2 = 1-kı+ko 1-ko-ki + 0, then A = B = 0 H and 2 and w2n = wo = w_2· (ii) If A # 0, B+ 0 and 0±/02-4 ko kı 2 ko # 1, then | ((6-1) (는부북)-) 시 ( $±V¢2-4 ko k1 1-ko+k1 1-k1-ko < 1, ko lim w2 n-1| = n 00 $±V¢2-4 ko k1 > 1. +V62-4 ko kı Otherwise, if wo = w_2 = 1-k1+ko 1-ko-ki u and + 0, then A = B = 0 and 2 ) ((1– ko) wo – H) = W2n-1 = ko = W-1. (iii) If C + 0 and D+ 0, then t/2-4 vo v1 1-vi+vo 1-v0-v1 < 1, E, lim 2n| = n 00 t/2 -4 vo v1 0, > 1. 2 2–4 vo v1 On the other hand, if zo = z-2 = 1-vi+vo 1-vo-vi e and + 0, then C = D = 0 and z2n = 20 = 2–2. tV2-4 vo v1 (iv) If C # 0, D # 0 and # 1, then 2 vo ((- 1) () - ) (Viorn tV2-4 vovị 1-vo+vi 1-v1-vo < 1, E, lim 2n-1| = n 00 b£/2 -4 vo v1 > 1. t/2-4 vo v1 Otherwise, if zo = z_2 = 1-vi+v0 1-v0-v1 € and + 0, then C = D = 0 and (5) ((1 – vo) žo – e) 22n-1 = = 2-1. VO 11
In this paper, we solve and study the properties of the following system
E Wn-p
> Zn-h
Zn-h
Wn-P
p=0
h=1
p=1
h=0
Wn+1
+µ and zn+1
+ €,
(4)
Zn - €
Wn - H
where u and e are arbitrary positive real numbers with initial conditions w; and z; for i =
-2, –1,0.
Theorem 2.1. Let {wn, zn}-
be a solution of (4), then
n=-2
o+ V02 – 4 ko k1
$ - V62 – 4 ko k1
k1 + ko
w2n-2
+ B
+
2
2
ko – k1
n
$ + Vø2 – 4 ko k1
$+ Vø2 – 4 ko k1
0 - V02 – 4 ko k1
0 - Vo2 – 4 ko k1
1
A
ko
1
+ B
ko
w2n-1
- 1
- 1
2
2
+ (-) (는)-)
(1– ko + k1
1– k1 – ko
1
- 1
ko
+ V2 – 4 vo vi
1 – vị + vo
+
- V62
4 vo v1
22n-2
+ D
E,
2
2
- vo - v1
1
+ V2 – 4 vọ v1
b + V2 – 4 vo v1
e;2 – 4 vo v1
al2 - 4 vo vị
22n-1
C
+ D
- 1
2
2
2
+(G-) )-) .
1- vi + vo
1- vo - v1
E,
where A, B, C and D are constants defined as
wo - u
z-1 + z-2
ko
ki =
O = ko + k1 + ko k1,
w-1+ w-2
20 - E
20 - €
w-1 + w-2
v1 =
= vo + vi + vo v1,
2-1+ z-2
1 – Om
Vo2 – 4 ko k1
2 62 – 8 ko ki
1– k1 + ko
1 –
1 – kị + ko`
1 — ко — k1
A =
- 4 ko k1 – o) + 2 ( wo –
w-2 -
V62 – 4 ko ki
2 ф2 — 8 kо k1
1 – ko + k1
- ko – k1
(1 – kị + ko) µ)|,
1 – k1 – ko
B
u - w-2
62 – 4 ko k1 + ¢) +2 ( wo –
=
4 vo v1
2 2 – 8 vo v1
1- vi + vo
1- vị + vo
2-2 -
1- vo - vi
1- vo - vi
V2 – 4 vo vi
1 – vị + vo
1- v1 + vo
E - z-2
2 – 4 vo v1
+
+2
20 -
2 2 – 8 vo vi
- vO - v1
1- vo - v1
since ko + ki 1 and vo +v1 71 for n € N.
Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow
form
Zn-h
Wn-p
Wn+1 - H
h=1
Zn+1 - €
and
(5)
1
1
Zn - €
Wn - u
E Wn-p
> Zn-h
p=0
h=0
4
||
||
Transcribed Image Text:In this paper, we solve and study the properties of the following system E Wn-p > Zn-h Zn-h Wn-P p=0 h=1 p=1 h=0 Wn+1 +µ and zn+1 + €, (4) Zn - € Wn - H where u and e are arbitrary positive real numbers with initial conditions w; and z; for i = -2, –1,0. Theorem 2.1. Let {wn, zn}- be a solution of (4), then n=-2 o+ V02 – 4 ko k1 $ - V62 – 4 ko k1 k1 + ko w2n-2 + B + 2 2 ko – k1 n $ + Vø2 – 4 ko k1 $+ Vø2 – 4 ko k1 0 - V02 – 4 ko k1 0 - Vo2 – 4 ko k1 1 A ko 1 + B ko w2n-1 - 1 - 1 2 2 + (-) (는)-) (1– ko + k1 1– k1 – ko 1 - 1 ko + V2 – 4 vo vi 1 – vị + vo + - V62 4 vo v1 22n-2 + D E, 2 2 - vo - v1 1 + V2 – 4 vọ v1 b + V2 – 4 vo v1 e;2 – 4 vo v1 al2 - 4 vo vị 22n-1 C + D - 1 2 2 2 +(G-) )-) . 1- vi + vo 1- vo - v1 E, where A, B, C and D are constants defined as wo - u z-1 + z-2 ko ki = O = ko + k1 + ko k1, w-1+ w-2 20 - E 20 - € w-1 + w-2 v1 = = vo + vi + vo v1, 2-1+ z-2 1 – Om Vo2 – 4 ko k1 2 62 – 8 ko ki 1– k1 + ko 1 – 1 – kị + ko` 1 — ко — k1 A = - 4 ko k1 – o) + 2 ( wo – w-2 - V62 – 4 ko ki 2 ф2 — 8 kо k1 1 – ko + k1 - ko – k1 (1 – kị + ko) µ)|, 1 – k1 – ko B u - w-2 62 – 4 ko k1 + ¢) +2 ( wo – = 4 vo v1 2 2 – 8 vo v1 1- vi + vo 1- vị + vo 2-2 - 1- vo - vi 1- vo - vi V2 – 4 vo vi 1 – vị + vo 1- v1 + vo E - z-2 2 – 4 vo v1 + +2 20 - 2 2 – 8 vo vi - vO - v1 1- vo - v1 since ko + ki 1 and vo +v1 71 for n € N. Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow form Zn-h Wn-p Wn+1 - H h=1 Zn+1 - € and (5) 1 1 Zn - € Wn - u E Wn-p > Zn-h p=0 h=0 4 || ||
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,