I find the Lautent Series of expansion of the following. f(₂)= @0212121 612121 hii 1-2 Valid in the annulus 02-1/<√2 liij Valid in 0</2-4/<4. 202²413 that is valid for (2+1) 202-4)³

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
I find the Lautent Series of expansion of
the following.
if(₂)=
1
202²413
@0212121
612121
li
☺ 1-2 Valid in the annulus 0</2-il <√2
íz
Valid in 0</2-4/<4.
that is valid for
(2+1)
202-4)³
Transcribed Image Text:I find the Lautent Series of expansion of the following. if(₂)= 1 202²413 @0212121 612121 li ☺ 1-2 Valid in the annulus 0</2-il <√2 íz Valid in 0</2-4/<4. that is valid for (2+1) 202-4)³
Expert Solution
Step 1: Laurent series expansion

1) (i)

     (a)           f left parenthesis z right parenthesis equals fraction numerator 1 over denominator z open parentheses z squared plus 1 close parentheses end fraction comma 0 less than open vertical bar z close vertical bar less than 1

                  equals 1 over z open parentheses 1 plus z squared close parentheses to the power of negative 1 end exponent equals 1 over z open parentheses 1 minus z squared plus z to the power of 4 minus z to the power of 6 plus......... close parentheses

                     equals 1 over z minus z plus z cubed minus z to the power of 5 plus..........

(b) f left parenthesis z right parenthesis equals fraction numerator 1 over denominator z open parentheses z squared plus 1 close parentheses end fraction comma open vertical bar z close vertical bar greater than 1

             equals 1 over z cubed open parentheses 1 plus open parentheses 1 over z close parentheses squared close parentheses to the power of negative 1 end exponent equals 1 over z cubed open parentheses 1 minus 1 over z squared plus 1 over z to the power of 4 minus 1 over z to the power of 6 plus............. close parentheses

               equals 1 over z cubed minus 1 over z to the power of 5 plus 1 over z to the power of 7 minus 1 over z to the power of 9 plus.........

steps

Step by step

Solved in 4 steps with 23 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,