I don't understand why the limit it from 0 to 1. Can you please explain it to me? Thank you

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I don't understand why the limit it from 0 to 1. Can you please explain it to me? Thank you 

### Solving for \( A_{mn} \) in Fourier Series Expansion

**Condition \( E \)**

Given:
\[ XY = U(X, Y | t=0) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} \cos(m\pi x) \cos(n\pi y) \]

To solve for \( A_{mn} \), we take:
\[ \iint\limits_{0}^{1} XY \cos(m'\pi x) \cos(n'\pi y) \, dx \, dy \]

Substituting the expression for \( XY \):
\[
\iint\limits_{0}^{1} \left( \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} \cos(m\pi x) \cos(n\pi y) \right) \cos(m'\pi x) \cos(n'\pi y) \, dx \, dy
\]

Interchanging the sums and the integral:
\[
= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} \iint\limits_{0}^{1} \cos(m\pi x) \cos(m'\pi x) \, dx \cdot \iint\limits_{0}^{1} \cos(n\pi y) \cos(n'\pi y) \, dy
\]

Utilizing the orthogonality property of the cosine functions over \([0, 1]\):
\[
= A_{m'n'} \left(\int_{0}^{1} \cos^2(m'\pi x) \, dx \right) \left( \int_{0}^{1} \cos^2(n'\pi y) \, dy \right)
\]

Thus,
\[
A_{mn} = \iint\limits_{0}^{1} XY \cos(m\pi x) \cos(n\pi y) \, dx \, dy 
\]

**Detailed Explanation**

1. **Equation Setup**: The initial equation represents a function \( XY \) expressed as a double infinite series involving cosine terms in both \( x \) and \( y \), with coefficients \( A_{mn} \).

2. **Integration to Solve for Coefficients**: To
Transcribed Image Text:### Solving for \( A_{mn} \) in Fourier Series Expansion **Condition \( E \)** Given: \[ XY = U(X, Y | t=0) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} \cos(m\pi x) \cos(n\pi y) \] To solve for \( A_{mn} \), we take: \[ \iint\limits_{0}^{1} XY \cos(m'\pi x) \cos(n'\pi y) \, dx \, dy \] Substituting the expression for \( XY \): \[ \iint\limits_{0}^{1} \left( \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} \cos(m\pi x) \cos(n\pi y) \right) \cos(m'\pi x) \cos(n'\pi y) \, dx \, dy \] Interchanging the sums and the integral: \[ = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} \iint\limits_{0}^{1} \cos(m\pi x) \cos(m'\pi x) \, dx \cdot \iint\limits_{0}^{1} \cos(n\pi y) \cos(n'\pi y) \, dy \] Utilizing the orthogonality property of the cosine functions over \([0, 1]\): \[ = A_{m'n'} \left(\int_{0}^{1} \cos^2(m'\pi x) \, dx \right) \left( \int_{0}^{1} \cos^2(n'\pi y) \, dy \right) \] Thus, \[ A_{mn} = \iint\limits_{0}^{1} XY \cos(m\pi x) \cos(n\pi y) \, dx \, dy \] **Detailed Explanation** 1. **Equation Setup**: The initial equation represents a function \( XY \) expressed as a double infinite series involving cosine terms in both \( x \) and \( y \), with coefficients \( A_{mn} \). 2. **Integration to Solve for Coefficients**: To
### Homework 12.8: Problem 2 

**Objective**: Solve the given partial differential equation (PDE)

**PDE and Boundary Conditions**:
\[ K(U_{xx} + U_{yy}) = U_t \]

**Boundary Conditions**:
\[A) \, U_x|_{x=0} = 0 \]
\[B) \, U_x|_{x=1} = 0 \]
\[C) \, U_y|_{y=0} = 0 \]
\[D) \, U_y|_{y=1} = 0 \]
\[E) \, U(x,y,0) = xy \]

**Diagram**:
The diagram depicts a square from (0,0) to (1,1) with the variable \( U(x,y,t) \) defined within it.

**Solution**:

1. **Setting up the solution**:
   \[ \text{Set} \, U(x,y,t) = X(x)Y(y)T(t) \]

2. **Substituting into the PDE**:
   \[ K(X''Y T + XY'' T) = XY T' \]

3. **Separating variables**:
   \[ \frac{X''}{X} = \frac{-Y''}{Y} + \frac{T'}{kT} \]
   \[ \frac{X''}{X} = -\lambda \]
   
4. **Solving for X**:
   \[ X'' + \lambda X = 0 \]

5. **Solving for Y**:
   \[ \frac{Y''}{Y} = \frac{T'}{kT} + \lambda \]
   \[ Y'' + \mu Y = 0 \]
   where \( \mu = -\lambda \).

6. **Solving for T**:
   \[ \frac{T'}{kT} = -(\lambda + \mu) \]
   \[ T' + k(\lambda + \mu)T = 0 \]

By solving the above separated ordinary differential equations (ODEs) using appropriate methods, we can find the functions \( X(x) \), \( Y(y) \), and \( T(t) \), and thus determine the solution \( U(x,y,t) \) of the given PDE under the given boundary conditions
Transcribed Image Text:### Homework 12.8: Problem 2 **Objective**: Solve the given partial differential equation (PDE) **PDE and Boundary Conditions**: \[ K(U_{xx} + U_{yy}) = U_t \] **Boundary Conditions**: \[A) \, U_x|_{x=0} = 0 \] \[B) \, U_x|_{x=1} = 0 \] \[C) \, U_y|_{y=0} = 0 \] \[D) \, U_y|_{y=1} = 0 \] \[E) \, U(x,y,0) = xy \] **Diagram**: The diagram depicts a square from (0,0) to (1,1) with the variable \( U(x,y,t) \) defined within it. **Solution**: 1. **Setting up the solution**: \[ \text{Set} \, U(x,y,t) = X(x)Y(y)T(t) \] 2. **Substituting into the PDE**: \[ K(X''Y T + XY'' T) = XY T' \] 3. **Separating variables**: \[ \frac{X''}{X} = \frac{-Y''}{Y} + \frac{T'}{kT} \] \[ \frac{X''}{X} = -\lambda \] 4. **Solving for X**: \[ X'' + \lambda X = 0 \] 5. **Solving for Y**: \[ \frac{Y''}{Y} = \frac{T'}{kT} + \lambda \] \[ Y'' + \mu Y = 0 \] where \( \mu = -\lambda \). 6. **Solving for T**: \[ \frac{T'}{kT} = -(\lambda + \mu) \] \[ T' + k(\lambda + \mu)T = 0 \] By solving the above separated ordinary differential equations (ODEs) using appropriate methods, we can find the functions \( X(x) \), \( Y(y) \), and \( T(t) \), and thus determine the solution \( U(x,y,t) \) of the given PDE under the given boundary conditions
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Limits and Continuity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,