(i) Convergent (j) Convergent (k) Convergent (1) Divergent 6. Determine whether the series is absolutely convergent, conditionally converge Give reasons for your answer. (a) (b) (-1)" √n (-1)-In n³+1 2n (Ⓒ) [(-1)"In 2(-1)³¹ (211) n=1 ANSWERS. (a) Conditionally convergent (b) Absolutely convergent

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

#6 part c

### Series Convergence Worksheet

#### 5. Determine the Convergence or Divergence of the Following Series

For each series, determine whether it converges or diverges. The options are: Divergent, Convergent.

(a) \(\sum_{n=1}^{\infty} \frac{2n-1}{n^3 + n}\)

(b) \(\sum_{n=1}^{\infty} \frac{2n+1}{n^2 + n}\)

(c) \(\sum_{n=1}^{\infty} \frac{n!}{(2n)!}\)

(d) \(\sum_{n=1}^{\infty} \frac{4^n}{n!}\)

(e) \(\sum_{n=1}^{\infty} \frac{n}{3^n}\)

(f) \(\sum_{n=1}^{\infty} \frac{n}{(\ln n)^n}\)

(g) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 1}\)

(h) \(\sum_{n=2}^{\infty} \frac{(-1)^n}{n-1}\)

#### Answers:
(a) Divergent  
(b) Divergent  
(c) Convergent  
(d) Convergent  
(e) Convergent  
(f) Divergent  
(g) Convergent  
(h) Convergent  
(i) Convergent  
(j) Convergent  
(k) Convergent  
(l) Divergent  

#### 6. Determine Whether the Series is Absolutely Convergent, Conditionally Convergent, or Divergent

Determine the nature of convergence of each series. Provide reasons for your answer.

(a) \(\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}\)

(b) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \ln n}{n^3 + 1}\)

(c) \(\sum_{n=1}^{\infty} (-1)^n \ln\left(\frac{2n}{n+1}\right)\)

#### Answers:
(a) Conditionally convergent  
(b) Absolutely convergent  
(c) Divergent  

This material provides
Transcribed Image Text:### Series Convergence Worksheet #### 5. Determine the Convergence or Divergence of the Following Series For each series, determine whether it converges or diverges. The options are: Divergent, Convergent. (a) \(\sum_{n=1}^{\infty} \frac{2n-1}{n^3 + n}\) (b) \(\sum_{n=1}^{\infty} \frac{2n+1}{n^2 + n}\) (c) \(\sum_{n=1}^{\infty} \frac{n!}{(2n)!}\) (d) \(\sum_{n=1}^{\infty} \frac{4^n}{n!}\) (e) \(\sum_{n=1}^{\infty} \frac{n}{3^n}\) (f) \(\sum_{n=1}^{\infty} \frac{n}{(\ln n)^n}\) (g) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 1}\) (h) \(\sum_{n=2}^{\infty} \frac{(-1)^n}{n-1}\) #### Answers: (a) Divergent (b) Divergent (c) Convergent (d) Convergent (e) Convergent (f) Divergent (g) Convergent (h) Convergent (i) Convergent (j) Convergent (k) Convergent (l) Divergent #### 6. Determine Whether the Series is Absolutely Convergent, Conditionally Convergent, or Divergent Determine the nature of convergence of each series. Provide reasons for your answer. (a) \(\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}\) (b) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \ln n}{n^3 + 1}\) (c) \(\sum_{n=1}^{\infty} (-1)^n \ln\left(\frac{2n}{n+1}\right)\) #### Answers: (a) Conditionally convergent (b) Absolutely convergent (c) Divergent This material provides
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,