Hydrothermal vents deep on the ocean floor spout water at temperatures as high as 570°C. This temperature is below the boiling point of water because of the immense pressure at that depth. Because the surrounding ocean temperature is at 4.0°C, an organism could use the temperature gradient as a source of energy. (a) Assuming the specific heat of water under these conditions is 1.0 cal/g ? °C, how much energy is released when 1.0 liter of water is cooled from 570°C to 4.0°C? (b) What is the maximum usable energy an organism can extract from this energy source? (Assume the organism has some internal type of heat engine acting between the two temperature extremes.) (c) Water from these vents contains hydrogen sulfide (H2 S) at a concentration of 0.90 mmole/liter. Oxidation of 1.0 mole of H2 S produces 310 kJ of energy. How much energy is available through H2 S oxidation of 1.0 L of water?
Energy transfer
The flow of energy from one region to another region is referred to as energy transfer. Since energy is quantitative; it must be transferred to a body or a material to work or to heat the system.
Molar Specific Heat
Heat capacity is the amount of heat energy absorbed or released by a chemical substance per the change in temperature of that substance. The change in heat is also called enthalpy. The SI unit of heat capacity is Joules per Kelvin, which is (J K-1)
Thermal Properties of Matter
Thermal energy is described as one of the form of heat energy which flows from one body of higher temperature to the other with the lower temperature when these two bodies are placed in contact to each other. Heat is described as the form of energy which is transferred between the two systems or in between the systems and their surrounding by the virtue of difference in temperature. Calorimetry is that branch of science which helps in measuring the changes which are taking place in the heat energy of a given body.
Hydrothermal vents deep on the ocean floor spout water at temperatures as high as 570°C. This temperature is below the boiling point of water because of the immense pressure at that depth. Because the surrounding ocean temperature is at 4.0°C, an organism could use the temperature gradient as a source of energy. (a) Assuming the specific heat of water under these conditions is 1.0 cal/g ? °C, how much energy is released when 1.0 liter of water is cooled from 570°C to 4.0°C? (b) What is the maximum usable energy an organism can extract from this energy source? (Assume the organism has some internal type of
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images