Humans are able to control their heat production rate and heat loss rate to maintain a nearly constant core temperature of Tcore=37°C under a wide range of environmental conditions. This process is called thermoregulation. From the perspective of calculating heat transfer between a human body and its surroundings, we focus on a layer of skin and fat, with its outer surface exposed to the environment and its inner surface at a temperature slightly less than the core temperature, T; = 35° C. Temperature of surrounding air is 10°C. Consider a person with a skin/fat layer of thickness L = 3 mm and effective thermal conductivity k = 0.3 W/m.K and person has a surface area A= 1.8 m?. The person is dressed in a bathing suit with an extremely low thermal conductivity of 0.014 W/m K. The emissivity of the outer surface of wet suits is 0.95. What thickness of aerogel insulation is needed to reduce the heat loss rate to 100 W (a typical metabolic heat generation rate) in air and what is the resulting skin temperature? hradiation= 5.9 W/m² K and hair = 2 W/m2 K

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
Humans are able to control their heat production rate and heat loss rate to maintain a nearly constant
core temperature of Tcore=37°C under a wide range of environmental conditions. This process is called
thermoregulation.
From the perspective of calculating heat transfer between a human body and its surroundings, we focus on a
layer of skin and fat, with its outer surface exposed to the environment and its inner surface at a temperature
slightly less than the core temperature, Ti = 35° C. Temperature of surrounding air is 10°C.
Consider a person with a skin/fat layer of thickness L= 3 mm and effective thermal conductivity k = 0.3 W/m.K
and person has a surface area A= 1.8 m?. The person is dressed in a bathing suit with an extremely low thermal
conductivity of 0.014 W/m K. The emissivity of the outer surface of wet suits is 0.95. What thickness of aerogel
insulation is needed to reduce the heat loss rate to 100 W (a typical metabolic heat generation rate) in air and
what is the resulting skin temperature?
hradiation= 5.9 W/m² K and hair = 2 W/m2 K
Transcribed Image Text:Humans are able to control their heat production rate and heat loss rate to maintain a nearly constant core temperature of Tcore=37°C under a wide range of environmental conditions. This process is called thermoregulation. From the perspective of calculating heat transfer between a human body and its surroundings, we focus on a layer of skin and fat, with its outer surface exposed to the environment and its inner surface at a temperature slightly less than the core temperature, Ti = 35° C. Temperature of surrounding air is 10°C. Consider a person with a skin/fat layer of thickness L= 3 mm and effective thermal conductivity k = 0.3 W/m.K and person has a surface area A= 1.8 m?. The person is dressed in a bathing suit with an extremely low thermal conductivity of 0.014 W/m K. The emissivity of the outer surface of wet suits is 0.95. What thickness of aerogel insulation is needed to reduce the heat loss rate to 100 W (a typical metabolic heat generation rate) in air and what is the resulting skin temperature? hradiation= 5.9 W/m² K and hair = 2 W/m2 K
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON