Consider a water tank that is being filled with rainfall at the top and is drained through a small hole at the bottom. The change in volume can be modelled by considering the amount of water entering and leaving the tank (per unit of time) as follows dV dt - fin - fout. = Here volume of water in the tank V is in litres, flow rate in fin is in litres per hour, flow rate out fout is in litres per hour and time t is in hours. Initially, the tank contains 50L of water: V(0) = 50. (a) Assume the rainfall throughout the day is getting heavier, such that, fin(t) = 10 + t and that the tank is losing 10% of its volume of water per hour, such that, fout (V) = 0.1V. Check by direct substitution that the function V(t) = 10(t + 5e-0.1t) - satisfies the ODE and the initial condition. with time: (b) Now assume that the hole is slowly growing in size, so that the flow rate out increases fout (V, t) = 0.1(1+0.1t)V. Solve the ordinary differential equation for V(t) with this flow rate out, using either separation o variables, or the integrating factor method. Make sure to also include the initial condition.
Consider a water tank that is being filled with rainfall at the top and is drained through a small hole at the bottom. The change in volume can be modelled by considering the amount of water entering and leaving the tank (per unit of time) as follows dV dt - fin - fout. = Here volume of water in the tank V is in litres, flow rate in fin is in litres per hour, flow rate out fout is in litres per hour and time t is in hours. Initially, the tank contains 50L of water: V(0) = 50. (a) Assume the rainfall throughout the day is getting heavier, such that, fin(t) = 10 + t and that the tank is losing 10% of its volume of water per hour, such that, fout (V) = 0.1V. Check by direct substitution that the function V(t) = 10(t + 5e-0.1t) - satisfies the ODE and the initial condition. with time: (b) Now assume that the hole is slowly growing in size, so that the flow rate out increases fout (V, t) = 0.1(1+0.1t)V. Solve the ordinary differential equation for V(t) with this flow rate out, using either separation o variables, or the integrating factor method. Make sure to also include the initial condition.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 7 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
How would i do this question using the seperation of variables method?
Solution
by Bartleby Expert
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,