How to solve %diff in t just for on secti
Related questions
Question
How to solve %diff in t just for on secti
![### Determination of the Period and Frequency of Simple Harmonic Motion
Table #2 illustrates the determination of the period and frequency of simple harmonic motion through experimental assessment and theoretical calculation. Below is the data and subsequent measurements:
| \( M_{sw} \) (g) | \( M_T \) (g) | \( M_T \) (kg) | \( t_{10} \) (s) | \( T_{exp} \) (s) | \( T_{th} = 2 \pi \sqrt{\frac{M_T}{K}} \) (s) | \(\% \text {dif in } T \) |
|:---------------:|:-------------:|:--------------:|:---------------:|:----------------:|:---------------------------------------------------:|:------------------------:|
| 200 | 290 | 0.29 | 4.16 | 0.416 | 0.6007064 | |
| 220 | 296 | 0.296 | 4.56 | 0.456 | 2.00703299 | |
| 240 | 290 | 0.290 | 5.88 | 0.588 | 2.0070899 | |
Frequency when \( M_{sw} = 200 \) g:
\[ f_{exp} = \frac{1}{T_{exp}} \]
**Note:**
\[
\begin{aligned}
M_H &: \text{Mass of the weight hanger} \\
M_{sw} &: \text{Mass of added slotted weights} \\
M_T &: \text{Total Mass} \\
T_{exp} &: \text{Experimental period} \\
t_{10} &: \text{Time for 10 oscillations} \\
T_{th} &: \text{Theoretical period} \\
f_{exp} &: \text{Experimental frequency} \\
\pi & = 3.14
\end{aligned}
\]
#### Questions:
1. How does the period change with increasing mass?
This data and analysis are crucial for understanding the dynamics of simple harmonic motion and validating theoretical predictions with experimental results.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdb15e654-30a5-46a4-8934-d26e13081e17%2F8c14e162-87a7-4b86-92bb-3aab5b799356%2Fvu6nzv_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Determination of the Period and Frequency of Simple Harmonic Motion
Table #2 illustrates the determination of the period and frequency of simple harmonic motion through experimental assessment and theoretical calculation. Below is the data and subsequent measurements:
| \( M_{sw} \) (g) | \( M_T \) (g) | \( M_T \) (kg) | \( t_{10} \) (s) | \( T_{exp} \) (s) | \( T_{th} = 2 \pi \sqrt{\frac{M_T}{K}} \) (s) | \(\% \text {dif in } T \) |
|:---------------:|:-------------:|:--------------:|:---------------:|:----------------:|:---------------------------------------------------:|:------------------------:|
| 200 | 290 | 0.29 | 4.16 | 0.416 | 0.6007064 | |
| 220 | 296 | 0.296 | 4.56 | 0.456 | 2.00703299 | |
| 240 | 290 | 0.290 | 5.88 | 0.588 | 2.0070899 | |
Frequency when \( M_{sw} = 200 \) g:
\[ f_{exp} = \frac{1}{T_{exp}} \]
**Note:**
\[
\begin{aligned}
M_H &: \text{Mass of the weight hanger} \\
M_{sw} &: \text{Mass of added slotted weights} \\
M_T &: \text{Total Mass} \\
T_{exp} &: \text{Experimental period} \\
t_{10} &: \text{Time for 10 oscillations} \\
T_{th} &: \text{Theoretical period} \\
f_{exp} &: \text{Experimental frequency} \\
\pi & = 3.14
\end{aligned}
\]
#### Questions:
1. How does the period change with increasing mass?
This data and analysis are crucial for understanding the dynamics of simple harmonic motion and validating theoretical predictions with experimental results.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
