How to solve %diff in t just for on secti

icon
Related questions
Question

How to solve %diff in t just for on secti

### Determination of the Period and Frequency of Simple Harmonic Motion

Table #2 illustrates the determination of the period and frequency of simple harmonic motion through experimental assessment and theoretical calculation. Below is the data and subsequent measurements:

| \( M_{sw} \) (g) | \( M_T \) (g) | \( M_T \) (kg) | \( t_{10} \) (s) | \( T_{exp} \) (s) | \( T_{th} = 2 \pi \sqrt{\frac{M_T}{K}} \) (s) | \(\% \text {dif in } T \) |
|:---------------:|:-------------:|:--------------:|:---------------:|:----------------:|:---------------------------------------------------:|:------------------------:|
| 200             | 290           | 0.29           | 4.16            | 0.416            | 0.6007064                                             |                         |
| 220             | 296           | 0.296          | 4.56            | 0.456            | 2.00703299                                            |                         |
| 240             | 290           | 0.290          | 5.88            | 0.588            | 2.0070899                                             |                         |

Frequency when \( M_{sw} = 200 \) g:

\[ f_{exp} = \frac{1}{T_{exp}} \]

**Note:**

\[ 
\begin{aligned}
M_H &: \text{Mass of the weight hanger} \\
M_{sw} &: \text{Mass of added slotted weights} \\
M_T &: \text{Total Mass} \\
T_{exp} &: \text{Experimental period} \\
t_{10} &: \text{Time for 10 oscillations} \\
T_{th} &: \text{Theoretical period} \\
f_{exp} &: \text{Experimental frequency} \\
\pi & = 3.14
\end{aligned}
\]

#### Questions:
1. How does the period change with increasing mass?

This data and analysis are crucial for understanding the dynamics of simple harmonic motion and validating theoretical predictions with experimental results.
Transcribed Image Text:### Determination of the Period and Frequency of Simple Harmonic Motion Table #2 illustrates the determination of the period and frequency of simple harmonic motion through experimental assessment and theoretical calculation. Below is the data and subsequent measurements: | \( M_{sw} \) (g) | \( M_T \) (g) | \( M_T \) (kg) | \( t_{10} \) (s) | \( T_{exp} \) (s) | \( T_{th} = 2 \pi \sqrt{\frac{M_T}{K}} \) (s) | \(\% \text {dif in } T \) | |:---------------:|:-------------:|:--------------:|:---------------:|:----------------:|:---------------------------------------------------:|:------------------------:| | 200 | 290 | 0.29 | 4.16 | 0.416 | 0.6007064 | | | 220 | 296 | 0.296 | 4.56 | 0.456 | 2.00703299 | | | 240 | 290 | 0.290 | 5.88 | 0.588 | 2.0070899 | | Frequency when \( M_{sw} = 200 \) g: \[ f_{exp} = \frac{1}{T_{exp}} \] **Note:** \[ \begin{aligned} M_H &: \text{Mass of the weight hanger} \\ M_{sw} &: \text{Mass of added slotted weights} \\ M_T &: \text{Total Mass} \\ T_{exp} &: \text{Experimental period} \\ t_{10} &: \text{Time for 10 oscillations} \\ T_{th} &: \text{Theoretical period} \\ f_{exp} &: \text{Experimental frequency} \\ \pi & = 3.14 \end{aligned} \] #### Questions: 1. How does the period change with increasing mass? This data and analysis are crucial for understanding the dynamics of simple harmonic motion and validating theoretical predictions with experimental results.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer