HOTSSAT62 ResulCS total wins R-squared: Adj. R-squared: Dep. Variable: 0.837 Model: OLS 0.837 Method: Least Squares F-statistic: 1580. Date: Mon, 12 Oct 2020 Prob (F-statistic): 4.41e-243 Time: 15:12:43 Log-Likelihood: -1904.6 No. Observations: 618 AIC: 3815. Df Residuals: 615 BIC: 3829. Df Model: 2 Covariance Type: nonrobust ==== ===== ====== ====== ===: ===== == coef std err t P>|t| [0.025 0.975] Intercept -152.5736 4.500 -33.903 0.000 -161.411 -143.736 0.3497 0.048 7.297 0.000 0.256 0.444 avg_pts avg_elo_n 0.1055 0.002 47.952 0.000 0.101 0.110 ======== ===== Omnibus: 89.087 Durbin-Watson: 1.203 Prob (Omnibus): Jarque-Bera (JB): Prob (JB): 0.000 160.540 Skew: -0.869 1.38e-35 Kurtosis: 4.793 Cond. No. 3.19e+04 === === Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specif. [2] The condition number is large, 3.19e+04. This might indicate that there are strong multicollinearity or other numerical problems.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

What is the equation for your model?

### OLS Regression Results

- **Dependent Variable:** total_wins
- **Model:** OLS (Ordinary Least Squares)
- **Method:** Least Squares
- **Date:** Mon, 12 Oct 2020
- **Time:** 15:12:43

#### Summary Statistics:
- **Number of Observations:** 618
- **Degrees of Freedom Residuals:** 615
- **Degrees of Freedom Model:** 2
- **Covariance Type:** nonrobust

#### Model Performance:
- **R-squared:** 0.837
- **Adjusted R-squared:** 0.837
- **F-statistic:** 1580
- **Prob (F-statistic):** 4.41e-243
- **Log-Likelihood:** -1904.6
- **AIC:** 3815
- **BIC:** 3829

#### Coefficients:
| Variable | Coefficient | Standard Error | t-value  | P>|t| | [95% Confidence Interval] |
|----------|-------------|----------------|----------|------|----------------------------|
| Intercept| -152.5736   | 4.500          | -33.903  | 0.000| [-161.411, -143.736]       |
| avg_pts  | 0.3497      | 0.048          | 7.297    | 0.000| [0.256, 0.444]             |
| avg_elo_n| 0.1055      | 0.002          | 47.952   | 0.000| [0.101, 0.110]             |

#### Diagnostic Test Statistics:
- **Omnibus:** 89.087
- **Prob (Omnibus):** 0.000
- **Skew:** -0.869
- **Kurtosis:** 4.793
- **Durbin-Watson:** 1.203
- **Jarque-Bera (JB):** 160.540
- **Prob (JB):** 1.38e-35
- **Condition Number:** 3.19e+04

#### Warnings:
1. Standard Errors assume that the covariance matrix of the errors is correctly specified.
2. The condition number is large, 3.19e+04. This might indicate that
Transcribed Image Text:### OLS Regression Results - **Dependent Variable:** total_wins - **Model:** OLS (Ordinary Least Squares) - **Method:** Least Squares - **Date:** Mon, 12 Oct 2020 - **Time:** 15:12:43 #### Summary Statistics: - **Number of Observations:** 618 - **Degrees of Freedom Residuals:** 615 - **Degrees of Freedom Model:** 2 - **Covariance Type:** nonrobust #### Model Performance: - **R-squared:** 0.837 - **Adjusted R-squared:** 0.837 - **F-statistic:** 1580 - **Prob (F-statistic):** 4.41e-243 - **Log-Likelihood:** -1904.6 - **AIC:** 3815 - **BIC:** 3829 #### Coefficients: | Variable | Coefficient | Standard Error | t-value | P>|t| | [95% Confidence Interval] | |----------|-------------|----------------|----------|------|----------------------------| | Intercept| -152.5736 | 4.500 | -33.903 | 0.000| [-161.411, -143.736] | | avg_pts | 0.3497 | 0.048 | 7.297 | 0.000| [0.256, 0.444] | | avg_elo_n| 0.1055 | 0.002 | 47.952 | 0.000| [0.101, 0.110] | #### Diagnostic Test Statistics: - **Omnibus:** 89.087 - **Prob (Omnibus):** 0.000 - **Skew:** -0.869 - **Kurtosis:** 4.793 - **Durbin-Watson:** 1.203 - **Jarque-Bera (JB):** 160.540 - **Prob (JB):** 1.38e-35 - **Condition Number:** 3.19e+04 #### Warnings: 1. Standard Errors assume that the covariance matrix of the errors is correctly specified. 2. The condition number is large, 3.19e+04. This might indicate that
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Linear Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman