hnny comes across a river that is 252 meters wide. He sees at the water flows eastward with a uniform velocity of 10m/s. Johnny sees his friend Sarah start her boat at point A the south bank and start to cross the river to point B which on the other side. Suppose the trip takes 3 minutes. Figure t the velocity of sarah's boat with respect to a) Johnny who is stationary on the ground b) A floating goose that's moving with the water. N B VE S Vriver = 1.1 m/s A 252 m

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
**Problem Description:**

Johnny comes across a river that is 252 meters wide. He sees that the water flows eastward with a uniform velocity of 1.10 m/s. Johnny sees his friend Sarah start her boat at point A on the south bank and start to cross the river to point B which is on the other side. Suppose the trip takes 3 minutes. Figure out the velocity of Sarah's boat with respect to

a) Johnny who is stationary on the ground  
b) A floating goose that's moving with the water.

**Diagram Explanation:**

Below the problem description is a graphical representation of the scenario:

1. **River Flow:** The diagram shows the river flowing eastward (to the right) with a velocity (\(v_{river}\)) of 1.1 m/s.
2. **Distance:** The river width (north-south direction) is marked as 252 meters.
3. **Points:** Point A is situated on the south bank, where Sarah starts her boat. Point B is directly north of Point A on the opposite bank.
4. **Boat's Path:** Sarah is crossing directly from Point A to Point B.

**Steps to Solve:**

1. **Calculate the Time of Crossing:**
   The boat trip takes 3 minutes. Converting minutes to seconds:
   \[
   3 \text{ minutes} = 3 \times 60 = 180 \text{ seconds}
   \]

2. **Calculate Sarah's Boat Velocity Across the River:**
   The northward velocity component, which is perpendicular to the flow of the river, is:
   \[
   v_{north} = \frac{252 \text{ m}}{180 \text{ s}} = 1.4 \text{ m/s}
   \]

3. **Velocity with Respect to Johnny:**
   Johnny observes both the eastward river flow and the northward motion of Sarah's boat. Using vector components:
   \[
   v_{east} = 1.1 \text{ m/s} \quad \text{(velocity of river)}
   \]
   \[
   v_{north} = 1.4 \text{ m/s} \quad \text{(Sarah's boat velocity across)}
   \]
   The resultant velocity (\(v_{res}\)) can be calculated using the Pythagorean theorem:
   \[
   v_{res} = \sqrt{v
Transcribed Image Text:**Problem Description:** Johnny comes across a river that is 252 meters wide. He sees that the water flows eastward with a uniform velocity of 1.10 m/s. Johnny sees his friend Sarah start her boat at point A on the south bank and start to cross the river to point B which is on the other side. Suppose the trip takes 3 minutes. Figure out the velocity of Sarah's boat with respect to a) Johnny who is stationary on the ground b) A floating goose that's moving with the water. **Diagram Explanation:** Below the problem description is a graphical representation of the scenario: 1. **River Flow:** The diagram shows the river flowing eastward (to the right) with a velocity (\(v_{river}\)) of 1.1 m/s. 2. **Distance:** The river width (north-south direction) is marked as 252 meters. 3. **Points:** Point A is situated on the south bank, where Sarah starts her boat. Point B is directly north of Point A on the opposite bank. 4. **Boat's Path:** Sarah is crossing directly from Point A to Point B. **Steps to Solve:** 1. **Calculate the Time of Crossing:** The boat trip takes 3 minutes. Converting minutes to seconds: \[ 3 \text{ minutes} = 3 \times 60 = 180 \text{ seconds} \] 2. **Calculate Sarah's Boat Velocity Across the River:** The northward velocity component, which is perpendicular to the flow of the river, is: \[ v_{north} = \frac{252 \text{ m}}{180 \text{ s}} = 1.4 \text{ m/s} \] 3. **Velocity with Respect to Johnny:** Johnny observes both the eastward river flow and the northward motion of Sarah's boat. Using vector components: \[ v_{east} = 1.1 \text{ m/s} \quad \text{(velocity of river)} \] \[ v_{north} = 1.4 \text{ m/s} \quad \text{(Sarah's boat velocity across)} \] The resultant velocity (\(v_{res}\)) can be calculated using the Pythagorean theorem: \[ v_{res} = \sqrt{v
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Projectile motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON