Hippity hoppity, abolish loopity def frog_collision_time(frog1, frog2): A frog hopping along on the infinite two-dimensional lattice grid of integers is represented as a 4-tuple of the form (sx, sy, dx, dy) where (sx, sy) is its starting position at time zero, and (dx, dy) is its constant direction vector for each hop. Time advances in discrete integer steps 0, 1, 2, 3, ... so that each frog makes one hop at every tick of the clock. At time t, the position of that frog is given by the formula (sx+t*dx, sy+t*dy) that can be nimbly evaluated for any t. Given two frogs frog1 and frog2 that are guaranteed to initially stand on different squares, return the time when both frogs hop into the same square. If these two frogs never simultaneously arrive at the same square, return None. This function should not contain any loops whatsoever. The result should be calculated using conditional statements and integer arithmetic. Perhaps the best way to get cracking is to first solve a simpler version of this problem with one-dimensional frogs restricted to hop along the onedimensional line of integers. Once you get that function working correctly, including all its possible edge cases such as either one or both frogs jumping axis-aligned or just staying forever in the same place, use that method to solve for t separately for the x- and y-dimensions in the original problem. Combine these two one-dimensional answers into the final answer. frog1 frog2 Expected result (0, 0, 0, 2) (0, 10, 0, 1) 10 (10, 10, -1, 0) (0, 1, 0, 1) None (0, -7, 1, -1) (-9, -16, 4, 2) 3 (-28, 9, 9, -4) (-26, -5, 8, -2) None (-28, -6, 5, 1) (-56, -55, 9, 8) 7 (620775675217287, -1862327025651882, -3, 9) (413850450144856, 2069252250724307, -2, -10) 206925225072431

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Hippity hoppity, abolish loopity

def frog_collision_time(frog1, frog2):

A frog hopping along on the infinite two-dimensional lattice grid of integers is represented as a 4-tuple of the form (sx, sy, dx, dy) where (sx, sy) is its starting position at time zero, and (dx, dy) is its constant direction vector for each hop. Time advances in discrete integer steps 0, 1, 2, 3, ... so that each frog makes one hop at every tick of the clock. At time t, the position of that frog is given by the formula (sx+t*dx, sy+t*dy) that can be nimbly evaluated for any t.
Given two frogs frog1 and frog2 that are guaranteed to initially stand on different squares, return the time when both frogs hop into the same square. If these two frogs never simultaneously arrive at the same square, return None.
This function should not contain any loops whatsoever. The result should be calculated using conditional statements and integer arithmetic. Perhaps the best way to get cracking is to first solve a simpler version of this problem with one-dimensional frogs restricted to hop along the onedimensional line of integers. Once you get that function working correctly, including all its possible edge cases such as either one or both frogs jumping axis-aligned or just staying forever in the same place, use that method to solve for t separately for the x- and y-dimensions in the original problem. Combine these two one-dimensional answers into the final answer.

frog1 frog2 Expected result
(0, 0, 0, 2) (0, 10, 0, 1) 10
(10, 10, -1, 0) (0, 1, 0, 1) None
(0, -7, 1, -1) (-9, -16, 4, 2) 3
(-28, 9, 9, -4) (-26, -5, 8, -2) None
(-28, -6, 5, 1) (-56, -55, 9, 8) 7
(620775675217287, -1862327025651882, -3, 9) (413850450144856,
2069252250724307, -2, -10)
206925225072431

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Polynomial time
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education