Hi I am needing some help with the below problem...I'm not grasping what it is asking me to do and I get an error that svd(A) needs to either be a single or double.   Use the MATLAB imshow() function to load and display the image A stored in the image.mat file,. For the loaded image, derive the value of k that will result in a compression ratio of . For this value of k, construct the rank-k approximation of the image. My Solution so far: A = load('/MATLAB Drive/Proj 2/MATLAB Image.mat') imshow(A.A)   [U, S, V] = svd(A) CR = (3072 * 4608) / (921 * (3072 + 4608 + 1)) A921 = U(:,1:921) * S(1:921, 1:921) * V(:,1:921) Rank(A921) A921 = uint8(round(A921))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Hi I am needing some help with the below problem...I'm not grasping what it is asking me to do and I get an error that svd(A) needs to either be a single or double.
 
Use the MATLAB imshow() function to load and display the image A stored in the image.mat file,. For the loaded image, derive the value of k that will result in a compression ratio of . For this value of k, construct the rank-k approximation of the image.

My Solution so far:

A = load('/MATLAB Drive/Proj 2/MATLAB Image.mat')
imshow(A.A)

 
[U, S, V] = svd(A)
CR = (3072 * 4608) / (921 * (3072 + 4608 + 1))
A921 = U(:,1:921) * S(1:921, 1:921) * V(:,1:921)
Rank(A921)
A921 = uint8(round(A921))
__________________________________________________________________________________________
### Problem 3

**Task:**
Use the MATLAB `imshow()` function to load and display the image \( A \) stored in the `image.mat` file. For the loaded image, derive the value of \( k \) that will result in a compression ratio of \( CR \approx 2 \). For this value of \( k \), construct the rank-\( k \) approximation of the image.

**Solution:**

```matlab
A = load('/MATLAB Drive/Proj 2/MATLAB Image.mat')
imshow(A.A)

[U, S, V] = svd(A)
CR = (3072 * 4608) / (921 * (3072 + 4608 + 1))
A921 = U(:,1:921) * S(1:921, 1:921) * V(:,1:921)
Rank(A921)
A921 = uint8(round(A921))
```

**Explanation:**
1. **Loading the Image:**
   - `A = load('/MATLAB Drive/Proj 2/MATLAB Image.mat')`: This line loads the image data from the specified `.mat` file.

2. **Displaying the Image:**
   - `imshow(A.A)`: This line uses the `imshow` function to display the loaded image \( A \).

3. **Computing the Singular Value Decomposition:**
   - `[U, S, V] = svd(A)`: This line computes the Singular Value Decomposition (SVD) of the matrix \( A \), where \( U \), \( S \), and \( V \) are the matrices obtained from the SVD.

4. **Calculating Compression Ratio:**
   - `CR = (3072 * 4608) / (921 * (3072 + 4608 + 1))`: This line calculates the compression ratio \( CR \) for a specific rank \( k = 921 \). The compression ratio is approximately 2 as requested in the task.

5. **Constructing Rank-\( k \) Approximation:**
   - `A921 = U(:,1:921) * S(1:921, 1:921) * V(:,1:921)`: This line constructs the rank-\( k \) approximation of the image using the first 921 singular values and the corresponding vectors from \( U \) and \( V \).

6. **
Transcribed Image Text:### Problem 3 **Task:** Use the MATLAB `imshow()` function to load and display the image \( A \) stored in the `image.mat` file. For the loaded image, derive the value of \( k \) that will result in a compression ratio of \( CR \approx 2 \). For this value of \( k \), construct the rank-\( k \) approximation of the image. **Solution:** ```matlab A = load('/MATLAB Drive/Proj 2/MATLAB Image.mat') imshow(A.A) [U, S, V] = svd(A) CR = (3072 * 4608) / (921 * (3072 + 4608 + 1)) A921 = U(:,1:921) * S(1:921, 1:921) * V(:,1:921) Rank(A921) A921 = uint8(round(A921)) ``` **Explanation:** 1. **Loading the Image:** - `A = load('/MATLAB Drive/Proj 2/MATLAB Image.mat')`: This line loads the image data from the specified `.mat` file. 2. **Displaying the Image:** - `imshow(A.A)`: This line uses the `imshow` function to display the loaded image \( A \). 3. **Computing the Singular Value Decomposition:** - `[U, S, V] = svd(A)`: This line computes the Singular Value Decomposition (SVD) of the matrix \( A \), where \( U \), \( S \), and \( V \) are the matrices obtained from the SVD. 4. **Calculating Compression Ratio:** - `CR = (3072 * 4608) / (921 * (3072 + 4608 + 1))`: This line calculates the compression ratio \( CR \) for a specific rank \( k = 921 \). The compression ratio is approximately 2 as requested in the task. 5. **Constructing Rank-\( k \) Approximation:** - `A921 = U(:,1:921) * S(1:921, 1:921) * V(:,1:921)`: This line constructs the rank-\( k \) approximation of the image using the first 921 singular values and the corresponding vectors from \( U \) and \( V \). 6. **
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,