Here defined the hyberbolie functim diretly in telm of The enponential furictim ;). simh(x) This is defined by The formiln, sinh(n) e^- e-h 11) cosha). This is defined by the formula, tek 2 e Cers h (u) = tan h(n), This is defined by The formula, e-er tanh(n) = sinh(n) ニ Cos h n) exte-x Iv) coseeh(a). This is defined by the for male, Coseeh (n) = ニ Sin hin) 2 . coscch(x) = / 火to ex e-X 2 v) seehin) = ニ coshin) exte-R = eteu 2. .'. seeh (x) e'te Coshin) Simhin) vi) coth(n) = ニ etex ete-" eeu' :coth(n) = en_

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(b) Sketch, on separate graphs, each of the functions in part (a).

る
Here defined the hyberbolie functim direetly
in telm of The enponential functim
;). simh(x)
This is defined by The
formulu,
sinhim) = ee
ニ
2
ii)
11) coshu). This is de fineod by the
formula;
Cers h (u) =
e
tek
2
li1) tanhn), This is defined by The
formula,
-ze
tanh(n) =
sinh(n)
ニ
Crs h (n)
Iv) formale,
coseeh (n), This is defined by the
Coseeh(n) :
2
ニ
sinhen)
ex eX
2
2
. cesceh(x)
eX e-X
v) seehin) =
ニ
coshin)
eute
二
exten
2.
'. seeh(x) =
e"ten
Coshin)
Simhin)
etek
vi) coth(n) =
etex
%3D
eneu'
: coth(n) =
ete-
%3D
Xキo ,
Transcribed Image Text:る Here defined the hyberbolie functim direetly in telm of The enponential functim ;). simh(x) This is defined by The formulu, sinhim) = ee ニ 2 ii) 11) coshu). This is de fineod by the formula; Cers h (u) = e tek 2 li1) tanhn), This is defined by The formula, -ze tanh(n) = sinh(n) ニ Crs h (n) Iv) formale, coseeh (n), This is defined by the Coseeh(n) : 2 ニ sinhen) ex eX 2 2 . cesceh(x) eX e-X v) seehin) = ニ coshin) eute 二 exten 2. '. seeh(x) = e"ten Coshin) Simhin) etek vi) coth(n) = etex %3D eneu' : coth(n) = ete- %3D Xキo ,
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,